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Abstract

Motivation: The Student t-test, applied to two-tissue comparisons based
on Affymetrix chip data, often results in the non-operational conundrum of
“all genes have significantly different regulation”, whenever the number of
samples is large. The intraclass correlation (icc) model presented here is a
new statistical model for the analysis of gene expression data that addresses
this problematic. The icc model includes correlated, tissue-dependent noise
terms, which are essential in avoiding the global overestimation of statistical
significance that otherwise compromises the process of gene selection.
Results: The icc model can be used with a standard t-test by a simple,
sample-size-dependent rescaling of the t statistic, or, for applications requir-
ing more sensitivity, with a more elaborate, biased-variance statistic t∗ which
we define, in conjunction with a semi-parametric resampling scheme to es-
tablish a reference distribution. Application of the icc model to the problem
of selecting genes involved in specification and differentiation of neuronal
and glial cells, on the basis of expression profiling of fetal brain tissues,
indicates that at false-discovery rate Fd = 25%, detection sensitivity for bio-
logical marker genes induced in the germinative regions examined is of order
S ∼ 40%.
Contact: joachim.theilhaber@aventis.com
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1 Introduction

In recent years much effort has been applied to analyzing gene expression
data generated by DNA chips and microarrays, typically to select a group
of genes involved in a biological process of special interest(Eisen et al., 1998;
Alon et al., 1999; Alizadeh et al., 2000; Ross et al., 2000; Spellman et al.,
1998). In this process of gene selection, the initial emphasis was not on rig-
orous statistical methods, but rather on using semi-quantitative criteria for
establishing significance of differential gene regulation (such as a requiring a
minimum fold change in gene expression over several measurements). More
recently however, rigorous statistical methods have been applied to the prob-
lem of gene selection(Tusher et al., 2001; Jin et al., 2001). In this spirit, in
the present paper, we present a statistical model for selecting genes on the
basis of two-class comparisons, such as might occur when comparing gene
expression between two different tissue panels. We have named the model
the intraclass correlation model (“icc model”), because its central feature
is a tissue-dependent, correlated noise term, which is added to more stan-
dard, statistically independent noise terms. The icc model can be applied
in two ways: it can be incorporated into the t-test by a simple, sample-size-
dependent rescaling of the t statistic; for situations requiring more sensitivity
however, on can use a more elaborate, biased-variance statistic t∗ which we
define, in conjunction with a semi-parametric resampling scheme for estab-
lishing a reference distribution.

As shown here, when intraclass correlation is not taken into account,
statistical tests tend to overestimate significance, and as sample sizes grow,
eventually all genes are assigned a significant change. Because the icc model
crucially avoids such a divergence in assignment, we refer to its effect as a
“renormalization”, in analogy to a similar process in physics.

In this paper, the icc model is applied to two problems, both based on
Affymetrix chip expression data. First, we compare two large panels of lung
and liver tissue expression data. This problem is not analyzed because of
its intrinsic biological interest, but to systematically develop the icc model.
Second, we proceed to a problem of explicit biological interest, the selection
of genes involved in the specification and differentiation of neuronal and glial
cells in the developing central nervous system, using expression profiles of
fetal brain tissues. A preliminary validation of the results, based on a test
set of biological markers, indicates that for detection of genes induced in
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germinative regions, at a false-discovery rate Fd = 25% we are achieving a
sensitivity S ∼ 40%.

2 t-tests for lung-liver tissue comparisons

In order to systematically explore performance of the t-test on gene expres-
sion data, we performed comparisons of large panels of rat lung versus rat
liver tissue samples. Expression data for a total of 30 rat lung and 30 rat
liver tissue samples, all from different donors, was obtained by hybridization
of the processed mRNA to 60 Affymetrix chips of the Rg u34a chip design1.
The resulting “lung-liver” data set consisted of expression profiles for the
8758 qualifiers2 represented on the Rg u34a chip design (excepting controls),
where each profile contains 60 intensity values (Affymetrix average differ-
ences(Lockhart et al., 1996)) quantifying the relative mRNA abundances in
the different samples, and denoted by

lung samples: xi, i = 1, 2, . . . , n1 , (1)

liver samples: yj, j = 1, 2, . . . , n2 , (2)

where n1 = 30 is the number of lung samples and n2 = 30 the number of
liver samples.

To compare, on a qualifier-by-qualifier basis, the two data series in Eqs.(1,2),
we used the t statistic (equal variances model, (Keeping, 1995, p.184)), given
by

t =
ȳ − x̄

(
( 1

n1
+ 1

n2
)s2

)1/2
, (3)

where x̄ and ȳ are the sample means of {xi} and {yj}, respectively, and where
s2 is the sample variance

1The 30 lung samples were generated from 30 individual Brown Norway rats, used as
controls in the course of a respiratory study unrelated to the present work. The 30 liver
samples were derived from 30 individual Sprague-Dawley rats, similarly used in the course
of toxicology studies.

2For Affymetrix chips, a “qualifier” refers to the set of features, also known as a probe
set, which together measure the abundance of transcripts containing a given RNA se-
quence. The mapping of qualifiers into genes is many-to-one.
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s2 =
1

n1 + n2 − 2




n1∑

i=1

(xi − x̄)2 +
n2∑

j=1

(yj − ȳ)2


 . (4)

In the underlying model assumed here each intensity value is equal to a
population mean, plus a noise term. If we furthermore assume, for each
qualifier, the null hypothesis

H0 :





1. equal population means for the panel of lung and
and the panel of liver samples,

2. normally distributed noise amplitudes,

3. and independent noise terms in each measurement,

(5)

then the P-value P corresponding to t under the two-tailed test is given by

P = 1 − A(t|ν) , (6)

where A(t|ν) is the integral of the Student-t distribution on the interval
(−t, t)(Abramowitz and Stegun, 1972, p.948) and ν = n2 + n1 − 2 are the
degrees of freedom of the test.

The lung-liver data set was analyzed by performing a separate t-test on
each of its 8758 expression profiles, each time comparing the lung to the liver
samples. It is convenient to define the two cumulative distribution functions

Nf (P0) = N(P ≤ P0|observed distribution) , (7)

Nr(P0) = N(P ≤ P0|reference distribution) . (8)

In Eq.(7), Nf (P0) denotes the number of qualifiers found with P-value less
than or equal to P0, in the observed distribution of P-values (i.e. in the
actual test), while in Eq.(8), Nr(P0) denotes the number of qualifiers that
would be found in the reference distribution, the distribution that obtains if
every profile is generated under some realization of the null hypothesis H0.
Under H0, we have to a good approximation
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Nr(P0) ≈ P0 N0 , (9)

where N0 = 8758 is the total number of qualifiers in the data set (Nr(P0) also
embodies a sampling variance that is relatively small provided P0N0 À 1,
and that we choose to ignore here).

Distributions Nf (P0) were computed for a number of random subsam-
plings of the tissue panels, in each case choosing without replacement m1 =
m2 ≡ m samples from the lung and liver panels, respectively, with m =
3, 4, 6, 10, 20, 30. The distributions are displayed in Fig. 1, where they are
compared to the unique reference distribution Nr(P0). Note that the figure Fig. 1 after

here.is a log-log plot, with log (N(P0)) plotted against −log(P0), so that the most
significant data, for which P0 << 1, lies on the right-hand side of the graph.
Taking logarithms of both sides of Eq.(9), we obtain

log (Nr(P0)) = logN0 − (−logP0) , (10)

so that as plotted in the figure, the reference distribution follows a straight
line with slope of -1.

The striking feature of Fig. 1 is that all observed distributions are very
different from the reference distribution, and that the difference systemati-
cally grows with sample size, with the observed distributions extending more
and more to the right, into regions of very high significance. Observed and
reference distributions are not even comparable for the noisiest and least
significant data (P0 → 1, left-hand side of the graph), where the distribu-
tions might have been expected to merge. Examination of the distribution
of the corresponding t statistic, shown in Fig. 2 for m = 30, shows that
it is much broader than the reference Student-t distribution (ν = 58), even
in the central region: it is this “swelling” of the t distribution, which grows
with sample size, that explains the drift of the observed distributions to ever
smaller P-values. Fig. 2 after

here.If taken at face value, the behavior observed in Fig. 1 is surprising because
it implies that eventually, nearly all of the genes represented on the Rg u34a
chip will be found to have significantly different levels of expression in the
two tissues. For instance, for the m = 30 comparison, setting the threshold
P0 so that the false discovery rate Fd = 0.25 (Appendix A) selects for Nf =
7356 qualifiers. Of this selection, about three-quarters or 5500 should be
true positives. As the Rg u34a chip carries only 8758 qualifiers in all, this
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result implies that at least 63% of the genes represented on the chip have
significantly different expression in the two tissues, and the trend observed in
Fig. 1 indicates that with enough samples, nearly all genes will be selected.

The results presented above suggest a sample-size dependent artifact in
the assignment of significance, and led us to reexamine the assumptions of
the null hypothesis H0 which underlies all of the t tests. In revisiting the null
hypothesis, we focused on explaining the overall swelling of the t distribution
(Fig. 2), which is at the root of the divergent distributions observed in Fig.
1.

We first explored the possibility that non-normality in the distribution
of noise was the cause of the swelling of the t distribution. As a test of
this hypothesis, we randomly permuted columns in each row of the lung-
liver data matrix, thereby breaking correlations between expression levels
and tissue type, but otherwise leaving the distribution of noise terms intact
on a qualifier-by-qualifier basis. Fig. 3 shows that the distribution Nf (P0) for
this randomized data set is nearly identical to the null distribution Nr(P0)
expected under H0. This result indicates that non-normality of the noise Fig. 3 after

here.distribution is not the cause of the swelling of the t distribution.
We also explored whether the variance-stabilizing transformation of (Durbin

et al., 2002), designed to remove the dependence of the variance on the mean,
and to symmetrize the noise distribution, would suppress the swelling of the
t distributions. We found that the transformation had no such effect, with
the t distributions having very similar widths before and after the transfor-
mation.

An alternative explanation for the swelling of the t distribution, which
emphasizes the role of correlations, is that the noise terms intervening in the
measurements are not strictly independent. In particular, if the noise terms
contain a tissue-specific component, which is separately consistent across lung
samples and across liver samples, but uncorrelated between lung and liver,
the result will be an “intraclass” correlation of the noise terms(Keeping, 1995,
p.226). This is the basis for the intraclass correlation (icc) model, which
we believe correctly accounts for the swelling of the t distribution. The
intraclass correlation tends to increase the difference in the sample means
while maintaining the sample variance; the result is to artificially increase
the observed values of t over what would be expected in the absence of
correlations. The icc model is described in some detail in Appendix B. In
the next section we focus on its application to the analysis of the lung-liver
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data set.

2.1 The intraclass correlation model: results

The icc model is completely determined by a single parameter, the intraclass
correlation coefficient ρ. In Appendix B, we derive the expression

ρ =
σ2

η

σ2
η + σ2

, (11)

where σ2 is the variance of the uncorrelated noise terms, and σ2
η the variance

of the correlated, tissue-specific noise terms.
The icc model predicts that instead of the raw t statistic, a “renormalized”

statistic t′ should be used,

t′ = β t (12)

where t is given as before (Eq.(3)), and where the renormalization constant
β is given by

β =

(
1 +

2ρ

( 1
n1

+ 1
n2

)(1− ρ)

)−1/2

. (13)

Under the icc model null hypothesis H ′
0 (Eq.(35), Appendix B), it is now t′,

and not t, that is distributed according to the Student-t distribution with
ν = n1 + n2 − 2 degrees of freedom. Note that for ρ 6= 0, we necessarily
have β < 1, and this explains the swelling of the distribution of the “raw”,
unrenormalized statistic t. Furthermore, for a given ρ, β decreases with
increasing sample size, so that the corresponding raw t distributions broadens
with increasing sample size relative to a Student-t distribution, leading to the
trend observed in Fig.1.

To apply Eqs.(12,13) to the lung-liver data set we actually proceed back-
wards, starting from the data itself rather than explicitly using Eq.(11). First,
β is estimated from the data according to the estimator

β̂ =
tν,0.75 − tν,0.25

t0.75 − t0.25

, (14)

where tν,0.25 and tν,0.75 are the 25th and 75th percentiles of the Student-t
distribution with ν = n1 + n2 − 2 degrees of freedom, respectively, and t0.25
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and t0.75 the corresponding percentiles for the observed distribution of t, with
t evaluated from Eq.(3) as before. An assumption implicit in Eq.(14) is that
the distribution in the interquartile range reasonably approximates H ′

0, with
significant departures occurring only outside that range, in the tails of the
observed distribution. An estimator for the correlation coefficient is then
found by solving Eq.(13) for ρ,

ρ̂ =


1 +

2β̂2

( 1
n1

+ 1
n2

)(1− β̂2)



−1

. (15)

For instance, for the lung-liver data set with n1 = n2 = 30 samples, we
find β̂ = 0.135, for which ρ̂ = 0.641. The cumulative distributions Nf (P0)
obtained from the renormalized test statistic t′, and for the same sample
sizes as in Fig. 1, are shown in Fig. 4, where it can be seen that the strongly
divergent behavior of the distributions has been suppressed (compare to Fig.
1). In particular, at low significance levels (P0 → 1, left-hand side of graph) Fig. 4 after

here.the observed distributions now all smoothly merge into reference distribution
Nr(P0)

2.2 Consistency of the icc model

The icc model applied to the lung-liver data set makes sense only if ultimately,
a single value of ρ, specific to the lung-liver tissue pair, can be used to
renormalize all distributions, irrespective of sample sizes m1 and m2. To
verify that the estimate of ρ ≈ 0.641 obtained above for n1 = n2 = 30 is
not an artefact of fitting a single case by Eq.(14), we thus systematically
investigated the dependency of ρ̂ on sample size and sample composition.
Values of ρ̂ and β̂ were generated from t-tests performed between random,
equal sized subsamplings of the 30 lung and 30 liver samples. Subsamples
without replacement, of size m1 = m2 ≡ m, 1 ≤ m ≤ 20, were used, with
5 independent subsamplings generated for each value of m. In Fig. 5, we
show the dependence of ρ̂ and β̂ on subsample size m. It can be seen that Fig. 5 after

here.a convergent value ρ̂ ≈ 0.65 is obtained provided m ≥ 4 samples in each
tissue panel. It is important to note that while ρ̂ ≈ constant for m ≥ 4, the
renormalization factor β̂ is markedly decreasing with increasing m, so that
an essentially constant ρ captures rescaling of the t distribution over a wide
range of conditions.
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Fig.(6) shows the concommittant dependency on subsample size m of
the number NF of qualifiers found after renormalization, when the selection
threshold P0 is continually adjusted to maintain a false-discovery rate Fd =
0.25. The figure indicates that despite a relatively large sampling variance, Fig. 6 after

here.due to the large heterogeneity of the samples within each tissue panel, the
mean value of NF converges to the value N̄F ∼ 500, provided m ≥ 10. Thus
ultimately, about 6% of the 8758 qualifiers on the Rg u34a chips are found
to have significantly different expression in the lung-liver panels.

3 Application: detection of genes involved in

neuron and glial cell development

The icc model was applied to expression data pertaining to the genesis of neu-
ronal and glial cells in the human embryo and fetus(Keyoung et al., 2001). In
this study, expression profiles were obtained, for a series of different develop-
mental stages, for tissue samples from two specific regions of the developing
fetal brain, the cerebral cortex and the ventricular zone. The ventricular
zone is a germinative region, in which initially proliferating stem cells un-
dergo successive differentiations into more specialized progenitors, which in
turn undergo terminal differentiation into neurons or glial cells(Chenn et al.,
1997; Goldman and Luskin, 1998). Following terminal differentiation, the
neurons migrate outward into the cerebral cortex where they assume a final,
mature phenotype. The aim of the analysis was to find genes with signifi-
cantly different expression in the ventricular zone compared to the cerebral
cortex, and in particular, to identify genes more highly expressed in the
ventricular zone, as these genes are potentially inducing the pro-neuronal or
pro-glial cell differentiation processes which are the focus of the investigation.

22 matched tissue samples from the ventricular zone and from the cere-
bral cortex were obtained from 11 donors at various stages of development,
spanning a period from the 15th (E15) to the 23rd week (E23) after con-
ception (Table 1). The processed mRNA from each of these samples was Table. 1 af-

ter here.hybridized to the 5 commercial Affymetrix Hg u95 chips (A through E chips)
and to an additional, custom-made Affymetrix chip (AVTF2). In total, 73373
expression profiles were generated, each profile consisting of 22 paired in-
tensity measurements (Affymetrix average differences) quantifying relative
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transcript abundance as measured by each Affymetrix qualifier, and denoted
by

cortex samples: xi, i = 1, 2, . . . , n1 , (16)

ventricular zone samples: yj, j = 1, 2, . . . , n2 . (17)

In Eqs.(16) and (17), n1 = n2 ≡ n = 11, the number of matched sample pairs.
In what follows, the data set will be referred to as the “cortex-ventricular
zone” (cortex-vz) data set.

3.1 Tests of tissue specificity: paired t-tests and biased-
variance statistic for increased sensitivity

Because of the presence of matched samples, for each profile in the cortex-
vz data set we applied a paired t-test(Keeping, 1995, p.185)(rather than an
unpaired test as in Eq.(3)), computing the statistic

t =
ȳ − x̄

(
1
n
s2

)1/2
, (18)

where n = 11 is the number of sample pairs, x̄ is the sample mean for the
cortex samples, ȳ is the sample mean for the ventricular zone samples, and
where s2 is the sample variance of the differences between matched samples,

s2 =
1

n− 1

n∑

i=1

(zi − z̄)2 , (19)

where zi = yi − xi.
For a given value of t, P-values P were computed from Eq.(6) as before,

but now with ν = n − 1 degrees of freedom. The resulting, unrenormalized
cumulative distribution Nf (P0) is shown in Fig. 7a. Applying the methods
of the previous sections through Eqs.(14) and (15), we find that the tissue
intraclass correlation is characterized by coefficient ρ = 0.083, and that a
rescaling coefficient β = 0.7 is required to renormalize t in accordance with
Eq.(12). The renormalized distribution function that results is shown in Fig. 7 after

here.Fig. 7b: unfortunately, as can be seen, the renormalized distribution nearly
merges everywhere into the reference distribution, which implies that very
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few significant profiles can be found. For instance, for a false-discovery rate
Fd = 0.25, only 4 significant profiles are found out of 73373. This result is
in contrast to those of the lung-liver comparison, where even after renormal-
ization, hundred of significant profiles were found for a comparable number
of degrees of freedom (Fig. 6), and furthermore for a much smaller data set
(8758 profiles instead of 73373); this difference in detection rate can be as-
cribed to the more subtle differences between the ventricular zone and cortex,
which are two related neural tissues, compared to the more drastic differences
between the lung and liver tissues examined above.

Because the simple renormalization scheme of Eq.(12) was not sufficient
to guarantee detection of genes in the more difficult cortex-vz comparisons,
to boost the sensitivity we adopted a “biased-variance” t statistic t∗, written

t∗ =
ȳ − x̄

(
1
n
(s2 + σ2

0)
)1/2

, (20)

where the variance bias term σ2
0 is an adjustable parameter, chosen to max-

imize sensitivity. It should be noted that t∗ is similar to, but not identical
to a statistic used by Tusher et al.(Tusher et al., 2001). The bias term σ2

0,
which reduces the value of t∗ relative to that of the usual t statistic, has the
greatest effect on data with overall low intensities, for which sample means
and sample variances are small. The variance bias thus acts as a filter that
suppresses the contributions of the low-level, noisy expression profiles. These
profiles are very numerous in the data set, and act as a “background noise”
that otherwise tends to mask the significant data.

For σ0 > 0, the sampling distribution of t∗ under the null hypothesis H ′
0 of

the icc model is not a Student-t distribution, and to our knowledge cannot be
obtained analytically. To gauge significance on the basis of their test statistic,
Tusher et al. used a randomization procedure in which members of the two
tissue panels were randomly permuted to establish an empirical, reference
distribution. However, this approach is not applicable under the assumptions
of the icc model, because it is crucial that the reference distribution maintain
the intraclass correlations, and these correlations are destroyed if one simply
mixes assignments of the different tissue samples (as was shown in Fig.3).

We resorted instead to a semi-parametric resampling scheme to generate
a reference data set that conserve the intraclass correlation of the cortex-vz
comparison, while approximating overall the conditions of the null hypothe-
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sis. A data set consisting only of the intensities for the cortex samples (i.e.
n = 11 samples in all) was first assembled. For each qualifier in this data set,
resampling then proceeded as follows (see Appendix C for details): for the
k-th time point in the expression profile (as defined in Table 1) the sample
mean µk and sample variance σ2

k were estimated from the intensities of the
rk replicates assigned to that time point. Using the estimates µk and σ2

k,
new intensities were then generated for all rk replicates, by a Monte Carlo
simulation which re-generates both uncorrelated and correlated noise terms,
and then adds them to the values of µk. In this procedure, the variance
of the correlated noise relative to that of the uncorrelated noise is specified
by the intraclass correlation coefficient ρ, which is a fixed parameter of the
simulation, and which is directly estimated from the cortex-vz data set, via
Eq.(15) (ρ = 0.083).

The Monte Carlo resampling procedure was applied twice, with different
random number seeds, to generate two independent synthetic data sets. Be-
cause these data sets incorporate different realizations of the icc noise model,
but are both based on the same cortex expression data, comparison provides
an instantiation of the null hypothesis. The reference distribution of t∗ was
thus generated by comparing on a qualifier-by-qualifier basis the two data
sets, using the same biased variance statistic as used in the actual cortex-vz
comparisons, Eq.(20).

3.2 Sensitivity optimization of the t∗-test

For the cortex-vz comparisons that follow, it was found practical to continue
using Eq.(6) to transform the test statistic t∗ into a “P-value” P . Although,
for σ0 > 0, P does not measure an absolute level of significance, it remains a
convenient variable for graphical display. False-discovery rates were directly
determined from the relation Fd(P0) = Nr(P0)/Nf (P0) (Eq.(21), Appendix
A), where now both Nf (P0) and Nr(P0) are determined from the data.

Figs. 8a-h explore the effect of increasing the variance bias term σ0 on
the distribution functions Nf (P0) and Nr(P0), and the concommittant effects
on the false-discovery rate as a function of P0. Thus, the top panels (a,c,e,g)
compare the observed and reference distributions (heavy dots, Nf (P0); thin
lines, Nr(P0)), while the bottom panels (b,d,f,h) display the corresponding
false discovery rates as a function of −log(P0), for σ0 = 0, 100, 250, 2500,
respectively. In all figures, the vertical lines signal the decision thresholds
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where a false-discovery rate Fd = 0.25 is obtained, and NF denotes the total
number of qualifiers found at that point.

Note that the first figure, Fig. 8a, for which σ0 = 0, is actually equivalent
to Fig. 7b, because t∗ = t in this particular case. The renormalization Fig. 8 after

here.procedures underlying Figs. 7b and 8a are quite different however, as in
Fig. 7b it is the observed distribution Nf (P0) that was renormalized by
rescaling through the transformation t′ = βt, while in Fig. 8a, the observed
distribution in untouched, and it is the reference distribution Nr(P0) that is
“adjusted” by using the semi-parametric resampling method described above
to generate it. The results are nonetheless the same, with only NF = 4
qualifiers found at the nominal false-discovery rate Fd = 0.25.

Figs. 8c-h show the effects of systematically increasing the bias term σ0

above 0. For σ0 = 100 (Fig. 8c), an open region appears between the curves
of the distribution functions Nf (P0) and Nr(P0), and as a consequence, the
false discovery rate function Fd(P0) (Fig. 8d) sharply decreases for increasing
−log(P0). NF = 1899 qualifiers are found at the false-discovery rate Fd =
0.25. Further increasing σ0 to 250 (Fig. 8e), further increases the separation
between the distribution functions, leading to an even greater drop in the
false-discovery rate (Fig. 8f), with now NF = 3029 qualifiers found at Fd =
0.25. Much larger values of the bias, however, such as σ0 = 2500 (Fig. 8g),
lead to a reversing trend (NF = 1652), with now decreasing sensitivity for
increasing σ0.

The dependence of NF , the total number of qualifiers found, on σ0 at fixed
false-dicovery rate Fd = 0.25 is plotted in Fig. 9. For σ0 < 80, NF is trivially Fig. 9 after

here.small. For σ0 = 80 exactly, the distributions Nf (P0) and Nr(P0) achieve a
critical separation, leading to the sudden jump in the value of NF . Maximum
sensitivity (maximum value of NF ) is then obtained for σ0 = 250, for which
NF = 3029. Note that although σ0 = 250 maximizes overall sensitivity, it
does not insure a strictly monotonic behavior of the false discovery rate as a
function of −log(P0). Thus, in Fig. 8f, after bottoming-out for −log(P0) ≈ 4,
the false discovery rate increases again as a function of −log(P0) (right-hand
side of the figure). This “contamination” of the most significant data is tied
to the persistence of a long tail in the reference distribution function; it can
be suppressed by choosing a larger bias, albeit at the cost of reducing the
overall sensitivity somewhat. In the present case, suppression of the tail
occurs for σ0 = 2500 (Fig. 8g), for which NF = 1652.
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3.3 Neuronal and glial marker genes

To quantify the biological relevance of gene selections obtained by the t∗-test,
we examined the distribution in the overall population of qualifiers, of the
P-values of a restricted set of biological markers, many of which are expected
to show strong differential expression in the cortex and ventricular zone com-
parisons. Thus, a test set of 24 genes (Table 2), known to be markers for
cells belonging to the neuronal, oligodendrocytic and astrocytic lineages was
assembled on the basis of expert biological knowledge. The list included Table. 2 af-

ter here.genes expressed in progenitor cells, as well as genes associated with the more
mature, differentiated cell phenotypes. For instance, the oligodendrocytic
markers include genes expressed in mature, myelinating cells (MAG, MOG,
MBP), as well as a transcription factor (SOX10)(Wegner, 2000) and other
markers (CNP, PLP) also expressed in oligodendrocyte progenitors. Sim-
ilarly, neuronal markers include genes expressed in mature cells (MAP1B,
MAP2, βIII tubulin, NF-L,NF-H), as well as a transcription factor (SOX2)
expressed in progenitor cells. Because of redundancies in gene representa-
tion on the Affymetrix chips, altogether the 24 genes map into 36 distinct
qualifiers.

It should be emphasized that the list of marker genes defined by Table 2
is only an an approximate test set, because it is not based on independent
expression profiling of the relevant tissues, but rather, on a somewhat weaker
expectation based on biological expert knowledge. Indeed, some of the genes
in Table 2 may in actuality undergo no differential regulation at all. Note
however that this state of affairs simply makes the task of detection artificially
harder, and must necessarily result in a conservative (rather than inflated)
estimate of detection sensitivity.

It should also be noted that for most of the genes in Table 2, the expected
dominance of expression in one tissue over the other (vz > cx or vz < cx)
is not known a priori; this lack of knowledge is irrelevant for the present
test, as we are only concerned with detecting significant change, and not in
confirming a given tissue specificity.

3.4 Marker genes distributions

Figs. 10 display the cumulative distributions of the biological markers,
ranked in the global population according to P-value, with separate distri-
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butions shown for qualifiers with average expression higher in the ventricular
zone (vz > cx, Fig. 10a) and for qualifiers with average expression higher
in cortex (vz < cx, Fig. 10b). In each figure, a rank of 1 indicates the Fig. 10 after

here.smallest P-value (the most significant expression profile), and the straight
line denotes the average, reference cumulative distribution expected under
completely random sampling of the parent population.

In Fig. 10a, displaying data for vz > cx, 24 out of the 36 biological
markers are represented, out of a total of 40575 qualifiers exhibiting vz >
cx expression (for most of which, it should be emphasized, the difference is
not significant). The very fast rise of the cumulative distribution on the left
indicates strong overrepresentation of the biological markers among signifi-
cantly regulated profiles. The one-sided t∗-test, with σ0 = 2500, selects for
2017 qualifiers with significant differential regulation out of 40575 at false-
discovery rate Fd = 0.25 (5% of the total, decision threshold shown in the fig-
ure). 9 biological markers out of 24 (37%) are in this selection, corresponding
to a 37%/5% ≈ 7-fold “enrichment” of markers relative to the global popu-
lation. Eliminating redundancies in the qualifier to gene mapping, we find
that 8 marker genes (ASH1, βIII-tubulin, GFAP, HES-1, BLBP, tubulin-α1,
PLP, FAT) out of 18 are selected at the given decision threshold, indicating
a detection sensitivity S = 8/18 ≈ 40%.

In Fig. 10b, displaying data for vz < cx, 13 markers out of the 36 are
represented, for a total of 32798 qualifiers. The same t∗-test as above selects
1671 qualifiers out of the 32798 at false-discovery rate Fd = 0.25 (5% of the
total). 7 biological markers out of 13 (46%) are in the selection, corresponding
to a 46%/5% ≈ 9-fold enrichment of biological markers relative to the global
population. 3 marker genes (MAP1B, NF-L, ELAV-3) out of 7 are selected
at the given decision threshold, again very roughly indicating a detection
sensitivity S ≈ 40%.

The overall statistical significance of the ranked distributions of biolog-
ical markers can be further quantified by P-values Pks obtained from the
Kolmogorov-Smirnov test(Theilhaber et al., 2002)(Keeping, 1995, p.259) per-
formed against a uniform distribution. We thus find Pks = 6.4 × 10−7 and
Pks = 8.6 × 10−5, for Figs. 10a and b, respectively: these small P-values
simply confirm the visually obvious nonuniformity of the marker genes dis-
tributions.

The strong association between the group of marker genes, selected on
the basis of biological relevance, and their ranking based on the test statistic
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t∗, supports the overall validity of the statistical approach in selecting genes.
The estimated detection sensitivity of relevant genes at false-discovery rate
Fd = 25% is S ∼ 40%. The ultimate validation of the methodology must
come however, from an in-depth, a posteriori investigation of the biological
relevance of any other genes selected by the method: such an investigation
is in progress and will be reported elsewhere.

4 Conclusions

Through systematic comparisons of large panels of gene expression data, we
have found that to perform meaningful significance tests it is essential that
the underlying statistical model includes a class-specific, correlated noise
term, in addition to the usual statistically independent term, typically as-
sumed in simpler models. The resulting “intraclass correlation model” (icc
model) is characterized by an additional parameter, the noise correlation co-
efficient ρ, which is furthermore directly determined from the data. The role
of noise correlation is crucial, in that it corrects for potentially gross overes-
timation of statistical significance, and avoids the conundrum of “all genes
are significantly regulated”.

We have found that the icc model can be incorporated into the conven-
tional t-test by a very straightforward, sample-size dependent rescaling of
the t statistic. For comparisons requiring more sensitivity however, we used
a modified, biased-variance statistic t∗, and computed significance under the
icc model by a semi-parametric resampling scheme using Monte Carlo sim-
ulation. This methodology was applied to the biological problem of finding
genes differentially regulated in the central nervous system during fetal de-
velopment, specifically those involved in the specification and differentiation
of neuronal and glial cells. A preliminary validation of the approach was
obtained by using a test set of marker genes, determined on the basis of
biological expert knowledge. From this test set, we estimated that the sen-
sitivity S of detection of biologically relevant genes, at false-discovery rate
Fd = 25%, was in the range S ∼ 40%. It should be noted however that the
ultimate validation of the methodology, and of the genes selected by it, will
come from a detailed, biologically focused investigation, now in progress, and
to be presented in another context.

Finally, it should be emphasized that while the analyses presented here
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focused on using t-tests or modified t-tests for basic two-tissue comparisons,
the underlying icc model itself is very general. In particular, the Monte
Carlo resampling scheme we have presented can always be used to generate
a reference data set, which can then used in conjunction with any other type
of test statistic.

Appendix A: false discovery rates

In selecting for the most significant data we retain only qualifiers with P ≤
P0. Rather than choose the selection threshold P0 a priori, it is more mean-
ingful to determine it on the basis of the false discovery rate Fd = Fd(P0),
defined as the estimated average fraction of false positives in the selection.
Fd is approximately given by

Fd =
Nr(P0)

Nf (P0)
, (21)

where Nf (P0) is the total number of qualifiers found with P ≤ P0, and
where Nr(P0) is the corresponding number of qualifiers found in the reference
distribution. In the text, Nr(P0) is either determined from an analytical
expression (Eq.(9)), or empirically, from the distribution that results from
data resampling.

Appendix B: the intraclass correlation (icc)

model

Consider the data for two tissue panels, as described by Eqs.(1) and (2). For
a given qualifier, we write the intensities {xi} and {yj} according to

xi = µ + αx + εT
xi , i = 1, . . . , n1 , (22)

yj = µ + αy + εT
yj , j = 1, . . . , n2 . (23)

In Eqs.(22,23), µ is the mean expression level, common to both tissues, αx

and αy are non-random, tissue-specific effects (with convention αx +αy = 0),
and εT

xi and εT
yj are the “total” noise terms, which account for all random
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effects in the measurements. We assume that εT
xi and εT

yj can be written as
the sums

εT
xi = εxi + ηx , i = 1, . . . , n1 (24)

εT
yj = εyj + ηy j = 1, . . . , n2, (25)

where εxi and εyj are the uncorrelated components of the noise, and where ηx

and ηy are tissue-specific components, common to all samples within a given
tissue, but uncorrelated between tissues.

The noise terms εxi and εyj are assumed to have zero mean3,

< εxi > = < εyj > = 0 , for all i, j , (26)

and identical variance σ2,

var(εxi) = var(εyj) = σ2 , for all i, j , (27)

and to be all mutually uncorrelated,

< εxiεxi′ > = < εyjεyj′ > = < εxiεyj > = 0 , for all i 6= i′, j 6= j′ . (28)

Similarly, the tissue-specific noise terms ηx and ηy are assumed to satisfy

< ηx > = < ηy > = 0 , (29)

var(ηx) = var(ηy) = σ2
η , (30)

< ηx ηy > = 0 , (31)

and are assumed uncorrelated with all terms {εxi} and {εyj}. Finally, all
noise terms are assumed to be sampled from normal distributions.

Because of the additive structure of Eqs.(24,25), where a single tissue-
specific term intervenes in each separate data series, the complete noise terms
{εT

xi} and {εT
yj} are correlated within their respective tissue panels. Specif-

ically, let us define ρ
(x)
ii′ to be the correlation coefficient for two noise terms

εxi and εxi′ in the {xi} data series, with i′ 6= i. ρ
(x)
ii′ is given by

3In what follows, < x > denotes the mean of random variable x.
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ρ
(x)
ii′ =

Cov(εT
xi, ε

T
xi′)

[var(εT
xi) · var(εT

xi′)]
1/2

, (32)

where Cov(εT
xi, ε

T
xj) ≡< (εT

xi− < εT
xi >)(εT

xi′− < εT
xi′ >) > is the covariance of

εxi and εxi′ , and with a similar equation holding for ρ
(y)
jj′ . Based on Eqs.(24-

31), we find that ρ
(x)
ii′ and ρ

(y)
jj′ are constant for all pairs of indices, and are

given by

ρ
(x)
ii′ = ρ

(y)
jj′′ = ρ , for all i 6= i′, j 6= j′ , (33)

where ρ, the intraclass correlation coefficient for either tissue(Keeping, 1995,
p.226), is given by

ρ =
σ2

η

σ2
η + σ2

. (34)

We shall assume that in a given data set, a single value of ρ applies to all
qualifiers. This value of ρ thus characterizes the icc model, and the null
hypothesis H ′

0 under the icc model can be stated as

H ′
0 :





1. equal population means for the panel of lung and
and the panel of liver samples (i.e. αx, αy = 0 in
Eqs.(22, 23)).

2. normally distributed noise amplitudes,

3. and noise terms are correlated within each tissue,
with qualifier-independent correlation coefficient ρ.

(35)

Distribution of the t-statistic under the icc model

Consider the t statistic as defined by Eq.(3). Using Eqs.(22) and (23), the
numerator in Eq.(3) can be written

u ≡ ȳ − x̄ = ε̄x − ε̄y + ηy − ηx . (36)
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where ε̄x and ε̄y are the sample means of {εxi} and {εyj}, respectively. Using
Eqs.(26-30) and Eqs.(34,36), we find that u is a normally distributed random
variable, with mean and variance given by

< u > = 0 , (37)

var(u) =
(

1

n1

+
1

n2

)
σ2 + 2σ2

η . (38)

Note that the variance σ2
η of the tissue-specific noise terms increases the

variance of ȳ− x̄ relative to the what it would be in the absence of intraclass
correlations. On the other hand, the sample variance s2 is unaffected by the
tissue-specific terms ηx and ηy, because they are subtracted out in each of
the sums making up Eq.(4). s2 can be written

s2 = σ2 S2

ν
, (39)

where ν = n2 +n1−2 and where S2, the sum of squares in Eq.(4) divided by
σ2, is distributed as a χ2 variable with ν degrees of freedom. Using Eqs.(37-
39), we can then write

t =

((
1
n1

+ 1
n2

)
σ2 + 2σ2

η

)1/2

(
1
n1

+ 1
n2

)1/2
σ

t′ . (40)

In Eq.(40), t′ is given by

t′ =
z

S2/ν
, (41)

where z is a normally distributed random variable with mean 0 and variance
1, and where S2 is distributed as χ2 with ν degrees of freedom: it immediately
follows that t′ is distributed as Student-t with ν degrees of freedom(Spiegel,
1975, p.117). Simplifying and modifying the prefactor in Eq.(40), by using
Eq.(34) to eliminate explicit reference of σ2 and σ2

η in favor of ρ, leads to
Eqs.(12) and (13). Finally, it should be noted that the entire derivation
outlined above also applies to paired t statistics (Eq.(18)), by simply setting
n1 = n2 = n where n is the number of matched sample pairs.
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Physical mechanisms for intraclass correlation

We have not pursued a systematic investigation of the possible physical
sources of the intraclass correlation, which in Eq.(34) is only captured phe-
nomenologically. We shall simply note that events occurring during the mul-
tiple steps which lead to the final hybridization of processed cRNA (har-
vesting of samples, storage, RNA extraction and mRNA amplification, etc)
may affect the final representation of cRNAs in a tissue-dependent manner.
In particular, the presence of different mixes of ribonucleases(D’Allesio and
Riordan, 1997) in the tissues of origin may systematically change the abun-
dances and compositions of different cRNA fragments downstream, once,
as is inevitable, partial digestion of the original mRNAs has occurred after
harvesting.

A more extreme view of intraclass correlation is that it represents an
actual (in vivo) regulation of gene expression. In this picture, it is then true
that nearly all genes significantly change in expression from one tissue to
the next: however, it is also understood that through the icc model, we are
folding into the null hypothesis “uninteresting” variation, that is, that part
of biological variation with variance given by Eq.(34).

To conclude, we strongly suspect that both technological and biological
effects are at play in intraclass correlation; they are indistinguishable in the
phenomenological model presented here.

Appendix C: Monte Carlo resampling method

In order to build a reference data set approximating the null hypothesis
H ′

0 of the icc model (Eqs.(35)) where it is crucial to maintain the observed
intraclass correlation, a semi-parametric resampling method based on Monte
Carlo simulation was used. The method proceeds in several steps as described
below.

For each qualifier, independently:

1. For the kth time point in the expression profile (e.g. Table 1), evaluate
the sample mean µk and sample variance σ2

k, using the rk replicates
belonging to that time point.
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2. Compute a global estimate σ2 of the variance of uncorrelated noise
across all time points, using the formula

σ2 =
1

n−K

K∑

k=1

rk∑

j=1

(xkj − µk)
2 , (42)

where K is the total number of time points, n the total number of
samples, and where xkj is the jth replicate at the kth time point.

3. Compute the variance σ2
η of the correlated noise, by solving Eq.(34) for

σ2
η,

σ2
η = σ2 ρ

1− ρ
. (43)

where ρ is estimated from the original data, Eq.(15).

4. Generate new intensities x∗kj according to a Monte Carlo scheme, with

x∗kj = µk + σk ξkj + ση ζ , (44)

where ξkj , k = 1, 2, . . . , K and j = 1, 2, . . . , rk are independent, Gaus-
sian random variables with zero mean and unit variance, and where ζ
is also a Gaussian random variable with zero mean and unit variance.
All random variables {ξkj} and ζ are mutually uncorrelated.
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TABLE CAPTIONS

Table 1: List of ventricular zone (vz) and cortex (cx) tissue samples profiled
on Affymetrix chips for the neuronal development study. Each row corre-
sponds to a matched (vz, cx) pair of tissues; the grouped time points are
defined for the Monte Carlo resampling described in Section 3.1.

Table 2: The 24 biological marker genes used to represent astrocytic, neu-
ronal, oligodendrocytic and radial glial cell lineages (mapping into 36 distinct
Affymetrix qualifiers). CELL: primary cell type; QUALIFIERS: number of
qualifiers for each gene.
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FIGURES CAPTIONS

Fig. 1: Cumulative distributions Nf (P0) (Eq.(7)) of P-values obtained for
t-tests performed on the lung-liver data set, for random subsamplings of the
lung and liver tissue panels, with subsample sizes m1 = m2 ≡ m indicated
in the plot. The straight line with slope -1 (leftmost), denotes the reference
distribution Nr(P0) (Eq.(8)) that would obtain under the null hypothesis.
Note that the figure is a log-log plot, with the most significant data on the
right-hand side.

Fig. 2: Histogram of the t statistic for the lung-liver data set (8758 qualifiers),
for m = 30 samples in each tissue (with 50 bins equally spaced over −50 ≤
t ≤ 40). The Student-t distribution with ν = 58 degrees of freedom, the
expected distribution under null hypothesis H0, is indicated in the center
(arbitrary units).

Fig. 3: Cumulative distribution Nf (P0) of P-values obtained for t-tests per-
formed on the lung-liver data set after complete randomization of column
assignments on a qualifier-by-qualifier basis, for m = 30 samples in each tis-
sue panel. As in Fig. 1, the straight line denotes the reference distribution
expected under the null hypothesis H0.

Fig. 4: Cumulative distributions Nf (P0) of P-values obtained for t-tests
performed on the lung-liver data set, after renormalization of the t statistic
by Eq.(12), for all the comparisons already considered in Fig. 1. Subsample
sizes m for each comparison are indicated in the plot. The straight line with
slope -1 (leftmost), denotes the reference distribution that obtain under the
new null hypothesis H ′

0.

Fig. 5: Dependence of the intraclass correlation coefficient ρ and the scaling
factor β on the number of samples m used in the lung-liver comparisons.
Values of the estimators ρ̂ (diamonds) and β̂ (triangles) were generated from
t-tests performed between random, equal sized subsamplings of the 30 lung
and 30 liver samples. Subsamples without replacement, of size m1 = m2 ≡ m,
1 ≤ m ≤ 20, were used, with 5 independent subsamplings generated for each
value of m.
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Fig. 6: Dependence of the number NF of qualifiers found in the lung-liver
comparisons, as a function of sample size m in both tissue panels, after
renormalization of the t statistic (see Fig. 4); a constant false-discovery rate
Fd = 0.25 is imposed. 5 independent subsamplings were generated for each
value of m.

Fig. 7: Distributions Nf (P0) for the cortex-vz comparisons (paired t-tests, 11
samples in each tissue panel). a) unrenormalized distribution; b) distribution
after renormalization (ρ̂ = 0.083, β̂ = 0.700). The reference distributions
Nr(P0) are indicated by the straight lines with slope -1.

Fig. 8: Cortex-vz comparisons (11 samples in each tissue panel), using the
biased-variance statistic, Eq.(20), and Monte Carlo resampling to establish
the reference distributions. The plots show dependence on variance bias for
σ0 = 0, 100, 250, 2500, as indicated at the top of the figures. The top pan-
els (a,c,e,g) compare the observed and reference distributions (heavy dots,
Nf (P0); thin lines, Nr(P0)); the bottom panels (b,d,f,h) display the corre-
sponding false discovery rates as a function of P0. The vertical lines signal
the decision thresholds where a false-discovery rate Fd = 0.25 obtains.

Fig. 9: Dependence of the number of qualifiers NF found in the cortex-vz
comparisons, as a function of variance bias term σ0 ( Eq.(20)), for a constant
false-discovery rate Fd = 0.25.

Fig. 10: Cumulative distributions of the 36 biological lineage markers (24
distinct genes, Table 2) in the global population of expression profiles ranked
according to the biased variance statistic t∗, with σ0 = 2500; rank 1 always
denotes the most significant profile. The straight diagonal lines (red) indicate
the average distribution under a random sampling of the population, and the
vertical lines (blue) the decision threshold for false-discovery rate Fd = 25%.
a) vz > cx: 24 markers (18 genes) occur in a population of 40575 qualifiers,
Pks = 6.4× 10−7; b) vz < cx: 12 markers (7 genes) occur in a population of
32,798 qualifiers, Pks = 8.6× 10−5.
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4
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2 3

7
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E21
E22

3 3

9
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11

E23
E23
E23

4 3

kr

Table 1.



Table 2.

CELL NAME DEFINITION QUALIFIERS
astrocyte GFAP Glial fibrillary acidic protein 1
astrocyte S100-BETA S100 calcium-binding protein beta 2
neuron FAT FAT cadherin 1
neuron HES-1 Hairy (Drosophila) homolog 1
neuron ASH1 Achaete scute homologous protein 2
neuron BETA-TUBULIN-III beta-tubulin class III 1
neuron ELAV-1 ELAV-like neuronal protein 1 1
neuron ELAV-2 ELAV-like neuronal protein 2 1
neuron ELAV-3 ELAV-like neuronal protein 3 1
neuron ELAV-4 ELAV-like neuronal protein 4 1
neuron LIM-1 LIM domain transcription factor 2
neuron MAP1B Microtubule-associated protein 1B 5
neuron MAP2 Microtubule-associated protein 2 3
neuron NF-H Neurofilament subunit  NF-H 1
neuron NF-L Neurofilament subunit  NF-L 2
neuron TUBULIN-ALPHA-1 Talpha1 tubulin 1
oligodendrocyte CNP Cyclic-nucleotide  3'-phosphodiesterase 1
oligodendrocyte MAG Myelin-associated glycoprotein 2
oligodendrocyte MBP Myelin basic protein 1
oligodendrocyte MOG Myelin oligodendrocyte  glycoprotein 2
oligodendrocyte PLP Myelin proteolipid protein 1
oligodendrocyte SOX10 Sex determining region Y-box 10 1
radial_glia BLBP Brain lipid-binding protein 1
radial_glia VIMENTIN Vimentin 1
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