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ABSTRACT

A general and detailed noise model for the DNA microarray measurement of gene expression
is presented and used to derive a Bayesian estimation scheme for expression ratios, imple-
mented in a program called PFOLD, which provides not only an estimate of the fold-change
in gene expression, but also con� dence limits for the change and a P-value quantifying
the signi� cance of the change. Although the focus is on oligonucleotide microarray tech-
nologies, the scheme can also be applied to cDNA based technologies if parameters for the
noise model are provided. The model uni� es estimation for all signals in that it provides
a seamless transition from very low to very high signal-to-noise ratios, an essential feature
for current microarray technologies for which the median signal-to-noise ratios are always
moderate. The dual use, as decision statistics in a two-dimensional space, of the P-value and
the fold-change is shown to be effective in the ubiquitous problem of detecting changing
genes against a background of unchanging genes, leading to markedly higher sensitivities,
at equal selectivity, than detection and selection based on the fold-change alone, a current
practice until now.

Key words: gene expression data analysis, microarray noise modeling, gene expression pro� les,
Bayesian estimation and detection.

1. INTRODUCTION

Currently, there is a growing � eld in molecular biology that revolves around the use of DNA
microarrays (Fodor et al., 1993; Schena et al., 1995; Lockhart et al., 1996; Wodicka et al., 1997;

Eisen et al., 1998; Cho et al., 1998; Iyer et al., 1999; Chu et al., 1999; DeRisi et al., 1997), a technology
which makes possible the measurement of gene expression in biological systems for thousands of genes
simultaneously. A ubiquitous problem in the analysis of expression data is the estimation of the fold-change
in the expression level of a gene in one context relative to its expression in another context, typically to
infer context-dependent, differential regulation. Given two raw measurements, the simplest approach has
been to take the arithmetic ratio of the values as an estimate of the fold-change. While for very strong
signals this leads to a meaningful estimate of the fold-change in the underlying mRNA concentrations,
for weaker signals the results are much more ambiguous because of contamination by noise. Furthermore,

1Aventis Pharmaceuticals, Cambridge Genomics Center, 26 Landsdowne Street, Cambridge, MA 02139.
2CuraGen Corporation, 555 Long Wharf Drive, New Haven, CT 06511.
3Biogen Inc., 14 Cambridge Center, Cambridge, MA 02142.
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for technologies based on differential signal intensities (e.g., Affymetrix [Lockhart et al., 1996]), the
values assigned to expression levels can even be negative, leading to the awkward situation of negative or
unde�ned expression ratios.

A work around for the problem of weak or negative expression levels is to “� oor” the values at some
threshold, typically thought to re� ect the level of noise in the experiment, and below which values are no
longer meaningful. While this approach is reasonable, it has the drawback of being heuristic, and in itself
neither provides con� dence limits for the estimate nor a measure of signi� cance for a change.

In the following, we circumvent heuristics by using a simple deductive approach grounded in a Bayesian
framework (Van Trees, 1978; Duda and Hart, 1973) and on an underlying model of the noise inherent in the
microarray measurements. Rather than immediately seek a point estimate of the fold-change, we � rst derive
a mathematical formula for the a posteriori distribution of all the fold-changes which can be inferred from
the given measurements. From this distribution, we then obtain several statistics, including an estimator
for the fold change, con� dence limits for the fold change at any given con�dence level, and a P-value for
assessing the statistical signi� cance of the change. In particular, we can assign fold-change estimates and
con� dence limits even to signal pairs where both signals are zero or negative, without resorting to heuristic
thresholds. Indeed, the mathematical framework uni� es estimation for all signals.

The computer implementation of this scheme has been called “PFOLD.” For any pair of intensities
(and associated measures of noise), PFOLD provides a two-dimensional representation of data based on
both fold-change and P-value. This representation can be very useful for the basic task of discriminating
the genes with signi� cant change from the usually much larger background of unchanging genes. For
instance, at a given level of selectivity, using the P-value as a statistic for discriminating changing versus
non-changing genes yields markedly higher sensitivity than using the fold-change alone, the latter being a
current practice until now. Note that, to some extent, the approach embodied in PFOLD, with intensities,
is analogous to that of the sequence alignment tool BLAST (Altschul et al., 1990), where both a score
and a P-value are provided for the two sequences being matched.

In what follows, we � rst present the noise model for microarray measurements that is the underpinning
of the entire approach. We then give the derivation of the mathematical model underlying PFOLD and
follow with validation work based both on Monte Carlo simulations and cRNA spiking experiments.

1.1. Related work

There are similarities between the model presented here and the one derived in the important work by
Chen et al. (1997), which also addresses the problem of quantifying expression ratios. However, there are
also basic differences between the two approaches: the noise model assumed by Chen et al. only accounts
for a coef� cient of variation as source of the noise (cf. Section 2.5), while PFOLD includes background
and cross-hybridization terms as well; perhaps more fundamentally, the approach adopted by Chen et al.
is not Bayesian and seeks to quantify the signi� cance of change by assuming that the bulk of the ratio
distribution represents the null hypothesis of no change against which a P-value is estimated. As such, the
authors do not obtain a point estimate of the actual fold-change or a con� dence interval for that estimate
(although a con� dence interval is obtained for the region of validity of the no-change hypothesis).

2. FORMULATION OF THE NOISE MODEL FOR
MICROARRAY MEASUREMENTS

2.1. Microarray technologies

To give some of the context of the noise model, we very brie� y review how DNA microarrays are used
to measure mRNA transcript abundance and hence quantify the level of expression of a gene (Fodor et al.,
1993; Schena et al., 1995; Lockhart et al., 1996; Nature Genetics, 1999). The microarray itself consists of
a glass slide or “chip” on which up to several thousand “target” features have been created,1 each feature

1In this paper we adhere to the convention that the nucleic acid strands immobilized on the chip are called the
“targets,” and the nucleic acid strands in the sample are called the “probes,” with the entire sample at times simply
referred to as “the probe.”



THE PFOLD ALGORITHM 587

consisting of a large number of identical DNA strands, which are complementary to a speci� c transcript.
The experimental procedure begins with the processing of a sample of total RNA, obtained from the
biological source of interest, into a “probe” containing labeled and fragmented cDNA or cRNA2 copies of
the mRNA transcripts, which are then hybridized to the targets in the features on the microarray. Because
the probe is labeled with a � uorescent dye, the amount of material that hybridizes to a speci� c feature is
measured when the entire chip is scanned by a laser, and the � uorescing intensities are captured into an
image, providing the data for the downstream analysis that is discussed here. Beyond this general sketch of
the procedure, the measurement process has details which are speci� c to each of the two major microarray
technologies currently in use, based on either cDNA (Schena et al., 1995) or on oligonucleotides targets
(Lockhart et al., 1996). In what follows, we focus on the oligonucleotide microarrays, although with an
appropriate noise model, the methodology applies to cDNA arrays as well.

It should be emphasized that with the current microarray technologies, obtaining an absolute measure-
ment of concentration is dif� cult, because the large sequence-dependent variation in hybridization af� nity
of cRNA probes to their DNA targets introduces a proportionality constant between the intensity and the
concentration of the transcript in solution that is generally unknown (unless determined by independent
and labor-intensive titration experiments). The emphasis in the � eld is therefore to quantify relative, rather
than absolute levels, of expression in the form of a “fold-change” which is the ratio of expression levels
measured in two different experiments.

2.2. The general noise model

For a given gene, the model of noise is based on the expression

x D Cnt C ²b C ²c; (1)

where x denotes the measured intensity, nt is the physical concentration of the mRNA transcripts in
solution (it could be expressed, for instance, as a molarity in pM), C is a proportionality constant speci� c
to the gene, and ²b and ²c are noise terms accounting for background and cross-hybridization effects,
respectively. In this model, C, ²b , and ²c are all considered random variables.

Equation (1) automatically embodies linearity, because it is assumed that for a given realization of
C, the signal part of the intensity, Cnt , is simply proportional to the concentration nt . While we have
indications of the breakdown of simple proportionality at high concentrations, we have found that the
effect is moderate and affects only a small proportion of the total gene population in a typical experiment.
For instance, for the scans of Affymetrix chips considered here, saturation is seen as a � attening of the
curve through a scatter plot when a very bright chip, as measured by median chip intensity, is compared
to a very dim chip; the onset of � attening typically occurs at bright chip intensities x » 13; 000, with
maximum intensities on either chip rarely exceeding x » 24; 000. However, in a population of 224 scans of
Affymetrix Mu19KsubA chips, even for the brightest chip, less than 10% of the genes called present3 had
intensities in the range x 13,000, and this fraction fell to about 3% for the chips with median brightness.
Furthermore, this form of signal saturation occurs precisely for genes with a very high signal-to-noise ratio,
for which a detailed noise analysis is less crucial (although some form of nonlinear rescaling, outside the
scope of this paper, may be necessary for proper processing of the data). We shall therefore assume a
linear model in all that follows.

Equation (1) is very general in that it assumes that the intensity x can be obtained in a number of
different ways, depending on the microarray technology and the image-processing methods used. For the
Affymetrix oligonucleotide (Lockhart et al., 1996), typically 40 nonredundant features are assigned to each
gene. The features are organized in pairs, consisting of a “perfect match” feature and a paired “mismatch”

2For Affymetrix chips, an additional ampli� cation step using in vitro transcription is applied. This results in a probe
consisting of cRNA, rather than cDNA copies of the original transcripts.

3For the oligonucleotide array data presented in this paper, all of the initial image processing, the extraction of
intensities in the form of “average differences,” and the assignment of present or absent calls to individual genes
on the chip, were done using the GeneChipTM software built by Affymetrix, Inc., 3380 Central Expressway Santa
Clara, California. We have simpli� ed the absent/present decision process by declaring so-called marginal calls to be
equivalent to present calls.
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feature, for which the oligonucleotides are either perfect matches to the targeted sequence or contain a
single mismatch at the central position, respectively. A trimmed mean of the 20 differential intensities
between pair members is then taken, and this de�nes a single, effective intensity x (the so-called average
difference), which is then assigned to the gene of interest. It should be noted that the intensity x can be
negative because it is based on several differential measurements. This will occur, for instance, when a
large number of the mismatch features are brighter than the corresponding perfect match features, typically
because of strong cross-hybridization by a component of the probe which has a sequence closely related
to that of the gene.

There are global sources of variation which affect all features on a chip equally and which result in
overall “brightness” or “dimness” of the scan image; some of the sources are chip-to-chip variation in
the ef� ciency of feature synthesis when the chips are constructed, or variation in overall hybridization
conditions or in total probe concentration from one experiment to the next. These global effects can be
accounted for by rescaling all of the intensities in a given scan by multiplication by a single rescaling
factor, chosen so that after rescaling the mean or median brightness of all the scans in a given data set are
adjusted to the same value. In what follows, we assume that such a global rescaling has been done, so that
all of the sources of variation to be modeled by Equation (1) are local in nature.

2.3. Sources of noise

In Equation (1) we write the proportionality constant as a constant plus variable part,

C D C0 C ±C (2)

where C0 is the mean of C and ±C ´ C ¡ C0. If we de� ne

²cv D ±Cnt ; (3)

then Equation (1) can be rewritten as

x D C0nt C ²; (4)

where now the composite noise term ² is the only random variable in the equation and ² is the sum of
three terms

² D ²cv C ²b C ²c; (5)

each arising from a distinct physical mechanism. In what follows, we assume that all the noise terms in
Equation (5) are normally distributed (“Gaussian”), with zero mean (Feller, 1966, p. 45). This assumption
is an approximation; we have found that in most instances the distribution of the noise is composite, with
exponential tails attached to an approximately Gaussian, central distribution. However, we believe that the
impact of non-Gaussian behavior on the resulting distribution of expression ratios is limited (cf. Section
4.1), and we pursue the Gaussian model in all that follows.

The � rst contribution in Equation (5), ²cv , is due to the coef� cient of variation (cv) of the proportionality
constant C and results in a noise term that is proportional to the signal. Using Equation (3) we write the
standard deviation ¾cv of ²cv as

¾cv D ®C0nt ; (6)

where ® is the coef� cient of variation of C,

® D
¾±C

C0
: (7)

The second term in Equation (5), ²b , accounts for background contributions to the noise. These contri-
butions arise, for instance, from � uorescent dye that is dispersed on the chip but not part of hybridized
complexes and from optical noise arising in the actual imaging process.
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Table 1. Typical Values for the Noise Parameters for Mu19KsubA Affymetrix Chipsa

xm ¾b ¾c ¾bc ¾m
cv ¾ m

² xm=¾m
²

685 37 § 13 256 § 48 259 § 45 171 311 § 40 2:2 § 0:25

aSeven samples derived from mouse C3H10T1/2 cells lines were hybridized to seven chips from the same lot;
the samples were biologically similar but not strictly equivalent, as they correspond to treatments with different
growth factors; the preparation protocol used antibody-enhance d � uorescence. The intensities on each chip were
rescaled so that the median intensity xm of present genes is constant across all chips and equal to the average xm

of the raw median intensities, xm D 685. The values given in the table are the averages across the seven scans,
with standard deviations indicated by the § terms; ¾b D standard deviation of background noise; ¾c D standard
deviation of cross-hybridization noise; ¾bc D standard deviation of combined background and cross-hybridization
noise; xm D median intensity for all the present genes on a chip; ¾ m

cv D standard deviation of noise due to the
coef� cient of variation ®, computed for median intensity and for ® D 0:25; ¾ m

² D standard deviation of the sum
of all noise terms, at median intensity; xm=¾ m

² D median signal-to-noise ratio.

The third term in Equation (5), ²c , models all cross-hybridization effects. It is conceptually a superpo-
sition of effects,

²c D
X

s 6Dtarget

Csns; (8)

where the sum is extended over all transcript species present in the sample, excepting the gene of interest,
and where ns is the concentration of transcript s, and Cs the measure of its af� nity to the feature under
consideration. In what follows, we do not attempt any detailed modeling of the terms in Equation (8),
but rather evaluate the variance of ²c, lumped with that of ²b, in a direct, semi-phenomenological manner
described in the next section.

2.4. Estimation of the noise parameters

The actual estimation of the characteristics of the noise terms in Equation (5) is technology dependent
and proceeds as follows for the Affymetrix oligonucleotide arrays.

An estimate of the standard deviation ¾b of the background noise ²b can be directly obtained by collecting
the intensities of groups of features on the chip which have no oligonucleotides and computing a sample
standard deviation for these intensities.4 A typical value is indicated in Table 1. However, for the method
that follows, it is convenient to group background and cross-hybridization terms into a single noise term
²bc,

²bc D ²b C ²c: (9)

In computing the standard deviation ¾bc of ²bc, our intent is not to establish ¾bc on a gene-by-gene basis,
but rather to obtain a value representative of all the genes on a chip, a somewhat easier task. To this end,
we have adopted an “on-the-� y” method which proceeds as follows: for a single, given scan, of all the
genes represented on the chip we separately consider those labeled present (P) and those labeled absent (A)
by the Affymetrix GeneChipTM decision algorithm.5 This results in the two distinct intensity distributions,
shown in Figs. 1a,b. For the absent genes, we can set nt ¼ 0 in Equation (1), so that for this population
x ¼ ²bc (this is the reason for grouping the two noise terms together). As a consequence, the standard
deviation ¾ A

bc of ²bc for the absent genes is given by

¾ A
bc ´ stdev

A
.x/; (10)

4For instance, we have used strips of nine features at the borders of the four “landmarks” which de� ne the corners
of the Mu19K Affymetrix chips.

5In Lockhart et al. (1996), see the section “Quantitative analysis of hybridization patterns and intensities” under
“Experimental Protocol.” See also footnote 3, page 587.
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FIG. 1. Distributions of the intensities for a murine intestine tissue sample hybridized to an Affymetrix Mu19KsubA
chip. Out of the total of 7,045 genes featured on the chip, 2,340 were signaled present and 4,705 signaled absent by
the Genechip decision algorithm. The resulting intensities distributions are separately shown for the present genes in
a) (median intensity D 1,200), and for the absent genes in b) (median intensity ¼ 0). The histograms were constructed
using 50 bins of equal intensity intervals. The standard deviation of the intensities of the absent genes, which here is
¾bc D 560, is the measure of the combined background and cross-hybridization noise. Note that the distribution of
the present genes is approximately log-normal.

where the “stdev” operator on the right-hand side computes the standard deviation of the absent gene
intensities (i.e., of the distribution shown in Fig. 1b). The � nal step in computing ¾bc is to assume that the
result obtained in Equation (10) for the absent genes applies to all the genes on the chip, so that we make
the assignment

¾bc D ¾ A
bc : (11)

This assumption appears reasonable because biological samples hybridized to high density Affymetrix
chips, which have features for about 7,000 genes, typically result in about 4,500 absent calls of the total
of 7,000, and this large number provides a broad statistical sampling of cross-hybridization. In effect, we
are saying that the intensity distribution of the absent genes (Fig. 1b) is implicitly present as a random,
additive term in the intensity distribution of the present genes (Fig. 1a) as well.

The Affymetrix GeneChipTM decision algorithm is proprietary, but is known to depend on a voting
procedure which uses sets of scores de� ned for each of the 20 perfect match and mismatch pairs of
features. A conceptual, “dummy” outline of the process might be as follows: for each feature pair, a plus
score is assigned if the perfect match intensity exceeds the mismatch intensity by a threshold proportional to
¾b , and conversely, a minus score is assigned if the mismatch intensity exceeds the perfect match intensity
by the same threshold. A present call is then assigned to the gene if a majority of feature pairs have positive
scores, and an absent call is assigned to the gene otherwise. While the actual GeneChipTM decision process
is different, its basis is nonetheless a geometric argument that requires consistency of the hybridization
pattern across many feature pairs (perfect matches consistently brighter than mismatches), and which does
not require a priori knowledge of the cross-hybridization noise itself. This avoids a circular argument in
the use of Equation (10) to derive an estimate of the standard deviation of the combined background
and cross-hybridization noises. Finally, note that in using Equation (10) we are ignoring the effects of
misclassi� cation errors in the GeneChipTM decision process itself, and thus Equation (10) should certainly
be regarded as no better than an approximation.

To estimate the coef� cient of variation ®, Equation (7), we analyzed two data sets, each capturing aspects
of technological variation of Affymetrix chips. The � rst data set was obtained by hybridizing probes derived
from a single biological sample (mouse C2C12 cell line) to seven Mu19KsubA chips all derived from the
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same chip lot.6 A total of three separate probes, corresponding to three separate preparations starting from
the initial sample of total RNA, were generated and hybridized to 1, 3, and 3 chips, respectively. After
scanning, the resulting numerical data sets were normalized to each other, and all genes with a majority
of present calls across the seven scans (2,097 genes out of 7,045) were then ranked according to average
intensity. The average value for the standard deviation of the combined cross-hybridization and background
noise was ¾bc D 268. For the i-th gene in the list, a sample coef� cient of variation ®i was then computed
by dividing the standard deviation of intensities across the seven samples by the average intensity. A � nal,
global estimate of the coef� cient of variation was obtained by averaging ®i for all genes in the top quartile
of the ranked list (524 samples, average intensity range 1,560 · x · 20,300), resulting in ® D 0:16
.1 § 0:023/. Note that by restricting the intensities to the top quartile, we are insuring that x > ¾bc=®

for nearly all genes and hence that the term ²cv dominates in Equation (5). This justi� es the estimation
procedure, where we treat all variation as arising from only this term.

A second data set was used to investigate the effect of chip lot variability. Identical probes, generated
from a single preparation of a biological sample (again, mouse C2C12 cell line) were hybridized to two
Mu19KsubA chips from different chip lots. After scanning, the two resulting numerical data sets were
normalized to each other, and all genes with at least one present call across the two scans (2,044 genes
out of 7,045) were then ranked according to average intensity. For the i-the gene, an estimate of ®2 was
obtained by using O®2 ´ ..x2 ¡ x1/=.x2 C x1//2=2, where x1 and x2 refer to the intensities in scans 1 and
2, respectively.7 A global estimate of ®2 was then obtained by averaging O®2 over the top quartile of genes
(511 samples, average intensity range 759 · x · 19,127, average ¾bc D 149). The resulting estimate of
®, ® D 0:23.1 § 0:037/, is somewhat larger than the previous one: this suggests that the variation induced
by using chips from different lots is greater than that induced by using different probes on chips from the
same lot.

We have not extended the analysis of the previous paragraphs to a systematic study of all possible
factors of variation. However, on the basis of these results, it appears that ® ¼ 0:25 is a reasonable (and
possibly slightly conservative) estimate of the maximum coef� cient of variation expected when different
probe preparations and different chip lots are simultaneously used in the hybridization process, which is
typical when large data sets are generated.

Finally, note that when multiple replicate scans are available, it is preferable to estimate ¾cv directly from
the available data, “on-the-� y,” by the standard deviation of the replicates. The latter procedure, however,
has not been used in the data analyses that are presented below, as replicates were not involved.

Typical magnitudes of the various noise terms discussed above are displayed in Table 1, speci� cally
for Affymetrix Mu19KsubA chips. Note that because of the inherent variation of overall chip brightness,
which makes rescaling necessary, the emphasis should be on the relative rather than absolute magnitude of
these terms. Note also that, according to the model, the median signal-to-noise ratio is low, xm=¾m

² ¼ 2:2.

2.5. Combining the noise terms

Because we do not seek to quantify absolute concentrations, but only expression ratios, for each gene we
can rede�ne the concentration variable nt in Equation (1) by de�ning the normalized variable n D C0nt ,
which allows us to avoid writing C0 in all the equations that follow. The noise model thus reduces to the
slightly simpler equation

x D n C ²; (12)

where as in Equation (5)

² D ²cv C ²b C ²c; (13)

but where now Equation (6) is written

¾cv D ®n; (14)

and where ¾bc is computed as before (Equation (11)).

6A chip lot refers to a set of chips derived from the same wafer during the fabrication process.
7Assuming Gaussian noise, the estimator O®2 for ®2 has bias O.®4/.
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To compute the standard deviation ¾² of the complete noise term ², we use the fact that ²cv and
²bc D ²b C ²c are uncorrelated, so that

¾ 2
² D var.²cv/ C var.²bc/ D .®n/2 C ¾ 2

bc: (15)

The coef� cient of variation ® used in Equation (15) is very similar to the coef� cient of variation c de�ned
by Chen et al. (1997). In the present model, however, other noise terms intervene, so that the total variance
of the noise may be large even as n ! 0, in contrast to the assumptions of Chen et al.

Equation (15) requires a priori knowledge of n to determine ¾² . However, if we write n ¼ x on the
right-hand side of Equation (15) (the simplest approximation suggested by Equation (12)), we obtain an
estimator O¾² for ¾² ,

O¾ 2
² D .®x/2 C ¾ 2

bc; (16)

so that we do not need to know the underlying concentration beforehand to estimate the cv contribution
to the total variance of the noise. In Appendix A, by deriving Taylor expansions in ® for the bias and
variance of O¾² , we show that provided ® is moderately small (say ® 0:25), O¾² is always weakly biased,
and that its standard deviation is never more than ®¾² : thus, the fractional error inherent in using O¾² is
given by ®, a limitation we deem acceptable.

2.6. Scan-to-scan noise correlation coef� cient

Equation (16) is an expression for the standard deviation of the noise for each gene across the entire
population on a chip, but says nothing about correlations between different scans. For a given gene, consider
two intensity measurements x1 and x2 obtained from two different samples, with noise terms labeled ²1
and ²2, respectively. The correlation coef� cient of the two noise terms is de� ned as (assuming zero means)
(Feller, 1966, p. 67)

½ D
< ²1²2 >

¾1¾2
; (17)

where ¾1 and ¾2 are the standard deviations of ²1 and ²2, respectively. Note that in general we expect
½ 6D 0, because, for a given gene, the cross-hybridization component of the noise, ²c , arises from effects
which tend to persist in different contexts (Equation 8).

To evaluate the correlation coef� cient ½ for the Affymetrix technology, we examined 50 pairs of scans
sampled at random with no replacement from a population of 100 scans (Mu11KsubA chips) covering
a large diversity of samples. Intensity pairs were accumulated for all genes and all scan pairs where the
gene is signaled “absent” in both scans. The numerical evaluation of the correlation coef� cient based on
the resulting data yielded the estimate ½ ¼ 0:7.

3. A POSTERIORI DISTRIBUTION OF CONCENTRATIONS

While Equation (12) gives the intensity measurement x in terms of the concentration n, it is exactly
its inverse that we wish to obtain, namely, the concentration as a function of the measurement. We can
formulate this in probabilistic terms by writing the Bayes Theorem (Drake, 1967, p. 26) (Van Trees, 1978)
for the variables n and x,

P.njx/ D
P.xjn/P.n/

P.x/
: (18)

In Equation (18), P.xjn/ is the conditional probability distribution function (pdf) for x , conditional on n,
P.n/ is the a priori distribution of n (re� ecting our state of knowledge of n before the measurement is
taken), and P.x/, the pdf for x, functions as a normalization term. From Equation (12) with the assumption
of Gaussian noise, we can immediately write

P.xjn/ D
1

.2¼¾ 2
² /1=2

exp
±

¡.x ¡ n/2=2¾ 2
²

²
; (19)

where ¾² D ¾².n/, is given by Equation (15).
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For the distribution P.n/, as prior knowledge we use the fact that the concentration is necessarily
nonnegative,

P.n/ D
(

0; n < 0;

¹e¡¹n; n ¸ 0;
(20)

where we shall take the limit ¹ ! 0 very shortly (this is just a device to get a step-function distribution
in the limit ¹ ! 0, while keeping P.n/ integrable at all times).

The step-function distribution which obtains in the ¹ ! 0 limit of Equation (20) may seem a trivially
simple choice for a prior distribution. In our minds, however, it has the extremely important feature of
solving the “division by zero”problem, that is, enabling one to assign, by way of the Bayesian formulation,
an expression ratio even when one or both intensities are zero or negative. Furthermore, we have been
hesitant to assign a more detailed prior distribution because of uncertainties in the actual distribution
of intensities of expressed genes, especially in the low-concentration limit. For instance, the distribution
of present genes illustrated in Fig. 1a is approximately log-normal, and such a distribution, with � tted
parameters, could be used in place of the step function prior. However, this distribution is based on using
the GeneChipTM decision algorithm for de� ning the present genes, and while we believe that the algorithm
is adequate for approximating the gross characteristics of the distributions of present or absent genes, it is
less clear that it accurately models the � ne-scale features of these distributions, especially at low intensities.
In view of these uncertainties, Equation (20) represents a conservative choice of prior.

In Equation (18), P.x/ is obtained by integration,

P.x/ D
Z 1

¡1
dnP.n/P.xjn/: (21)

Using the explicit formula in Equation (20), we can write Equation (18) as

P.njx/ D
P.xjn/¹e¡¹n

R 1
0 dn0P.xjn0/¹e¡¹n0 ; n ¸ 0; (22)

where P.njx/ D 0 for n < 0. In Equation (22), the constant coef� cient ¹ factors out from both numerator
and denominator, and in the limit ¹ ! 0 the equation becomes

P.njx/ D
P.xjn/

OP.x/
; n ¸ 0; (23)

where P.xjn/ is given by Equation (19) and where the denominator is now

OP.x/ D
Z 1

0
dnP.xjn/: (24)

Equation (24) can be readily evaluated using error functions. Rather than directly explore the consequences
of Equation (23) on estimation of concentrations, we use it below to quantify the distribution of fold
changes.

4. A POSTERIORI DISTRIBUTION OF FOLD CHANGES

For a given gene, let us assume we wish to evaluate the fold-change in expression between two experi-
ments, 1 and 2. We assume that the mRNA concentrations in the experiments are n1 and n2, respectively,
and write for the corresponding observed intensities, x1 and x2,

x1 D n1 C ²1; (25)

x2 D n2 C ²2: (26)
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The fold-change R of the concentration in experiment 2 relative to experiment 1 is given by the ratio

R D
n2

n1
: (27)

While in Equation (27) we do have direct access to n1 and n2, we can immediately formulate the estimation
of R in Bayesian terms by writing the a posteriori distribution of R as

fR.Rjx1; x2/ D
Z 1

0
dn1

Z 1

0
dn2±

³
n2

n1
¡ R

´
P.n1jx1/P.n2jx2/; (28)

where x1 and x2 are the intensity measurements in experiments 1 and 2, respectively, where ±.: : :/ refers
to the Dirac delta function, and where P.njx/ is given in Equation (23) above.

In formulating Equation (28) and in most of what follows, we make the simplifying assumption that
the noise terms ²1 and ²2 are uncorrelated, so that ½ D 0 in Equation (17). In Appendix B, we lift this
restriction and generalize the derivation to a correlated noise model, with ½ 6D 0, to be fully implemented
in a future version of PFOLD. In fact, a correlated noise model is more realistic insofar as the cross-
hybridization component of the noise, ²c , arises from semi-deterministic effects which tend to persist in
different contexts (thus ½ ¼ 0:7 for Affymetrix chips, Section 2.6). However we wish to emphasize that
the present implementation of PFOLD, with ½ D 0, is not unreasonable but merely results in a statistically
more conservative estimate of fold-change.

Performing the integration indicated in Equation (28) is a very straightforward if slightly tedious task.
We obtain the distribution function for R in the form (dropping the explicit dependence on x1 and x2 in
fR.Rjx1; x2/),

fR.R/ D
C.x1/C.x2/

2¼¾1¾2
exp

³
¡

x2
1 .R ¡ R0/2

2.¾ 2
2 C R2¾ 2

1 /

!
I .x1; x2/; (29)

where ¾ 2
i D ¾ 2

² .xi/, i D 1; 2, with ¾².x/ now given by Equation (16), R0 ´ x2=x1, and with the
normalization term

C.x/ D
2

1 C erf.x=
p

2¾².x//
; (30)

where erf is the error function (Abramowitz and Stegun, 1972, p. 297). I .x1; x2/ is de� ned by

I D ¾ 2
12 exp

³
¡

a2
12

2¾ 2
12

!
C a12.2¼¾ 2

12/1=2 1
2

±
1 C erf.a12=

p
2¾12/

²
; (31)

where
1

¾ 2
12

D
1

¾ 2
1

C
R2

¾ 2
2

(32)

a12 D
³

x1

¾ 2
1

C
Rx2

¾ 2
2

! , ³
1

¾ 2
1

C
R2

¾ 2
2

!
(33)

Though complex-looking, Eq. (29) has two simple limits.

Case 1: high concentrations. If in both experiments the RNA concentrations are large compared to
the standard deviation of the noise, with consequence xi >> ¾².xi/, i D 1; 2, we � nd that R has an
approximately normal distribution, which for x2 ¸ x1 has the form

fR.R/ ¼
1

.2¼¾ 2
R/1=2

exp

³
¡

.R ¡ R0/2

2¾ 2
R

!
: (34)
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In this limit, the median of R is just the ratio of the measurements,

< R > D R0 D
x2

x1
: (35)

The variance ¾ 2
R of R is given by

¾ 2
R D

¾ 2
2 C x2

2¾ 2
1 =x2

1

x2
1

: (36)

Using Equation (16) in the limit ®x À ¾bc , in turn we � nd a simple approximation for the standard
deviation of R,

¾R D
p

2®R0: (37)

Thus, in the high-concentration limit, the standard deviation of the fold-change relative to its median is
given by a constant,

¾R

R0
D

p
2®: (38)

Equation (37) indicates that no matter how large the signals, the fold-change will retain an irreducible
coef� cient of variation of order

p
2® (¼ §35% for ® D 0:25).

Case 2: very low concentrations. If in both experiments the RNA concentrations are so low that
xi << ¾².xi/, i D 1; 2, then the distribution takes on the “universal” form,

fR.R/ ¼
1
¼

1
1 C R2 : (39)

where for simplicity we assume ¾1 D ¾2. In this limit, the distribution of R is completely independent of
the concentrations, the in� uence of which has been overwhelmed by the noise.

Equation (39) de� nes a so-called Cauchy distribution (Feller, 1966, p. 50), which does not have a �nite
mean because of its 1=R2 functional dependence for large R. In fact, the original distribution from which
Equation (39) was derived, Equation (29), also has a 1=R2 dependence for large R, even in the quasi-
normal limit of Equation (34), so that fR.R/ does not have a well-de� ned mean under any circumstances.
On the other hand, the median of Equations (29) or (39) is always well-de� ned, and we shall use it as an
estimator for R in what follows.

The cumulative distribution function corresponding to Equation (39) is given by

P .R · R0/ D
2
¼

tan¡1 R0: (40)

For instance, the 80% con� dence limits for R are [0.16, 6.3], indicating that the distribution in Equation (39)
is very broad. Note that these large bounds on R are obtained even when the intensities are equal, x2 D x1,
provided x1;2 ¿ ¾1;2.

The derivation of Equation (29) for the fold-change distribution fR.R/ can be understood in much
simpler geometrical terms, based on the following construction, illustrated in Fig. 2: for each pair of
intensities (x1, x2), draw a box in the plane about the point .x1; x2/ with extents §¾² in each dimension
(Fig. 2a). This de� nes the range of concentrations .n1; n2/ which are compatible with the observed data
.x1; x2/. One then draws lines from the origin to all the points in the box, creating the picture of a fan shown
in Fig. 2a. The collection of slopes R of all the lines in the fan is the set of all fold-changes compatible
with the observed intensities .x1; x2/. Apart from the simpli� cation of sharp con� dence limits imposed
by a rectangular box, the distribution of the slopes in the fan in Fig. 2a is thus fR.R/, Equation (29). In
the low signal-to-noise limit, Fig. 2b, a slight modi� cation is imposed on the construction: the areas of
the box that would correspond to negative concentrations are simply omitted from the construction of the
fan (the white area in Fig. 2b). This procedure corresponds to imposing the nonnegative prior probability
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FIG. 2. Qualitative illustration of the derivation of Eq. (29), explaining the behavior of the distributions shown in
Fig. 3. For each pair of signals .x1; x2/, draw a box with extents §¾² about the point in the plane. Draw all lines
from the origin to points in the box: the distribution of slopes of these lines is the a posteriori distribution of fold-
changes, Eq. (29); a) construction for large signal-to-noise ratios, with the intensity pair (100, 400); b) construction
for low signal-to-noise ratio, (5, 20); note that the part of the box which lies on the negative axis is excluded from
the construction and this constraint is equivalent to stating the Bayes Theorem with the nonnegative prior for the
concentrations that is used in the derivation of Eq. (29).

distribution on the concentrations (Equation (20)), and makes the geometrical construction described here
Bayesian.

To clarify the behavior of Equation (29) and the transition from high to low signal-to-noise ratios, in
Fig. 3 we display fR.R/ for a series of intensities (x1, x2), for constant noise terms ¾1 D ¾2 D 20. In
the �gure the ratio of intensities x2=x1 is always 4 (except for the case where both signals are 0), but the

FIG. 3. A posteriori distribution of the fold change R, Eq. (29), for a series of intensity pairs .x1; x2/ covering the
range from high to low signal-to-noise ratios. In all cases but (0, 0), the ratio of intensities is 4. The standard deviation
of both noise terms is kept constant at ¾1 D ¾2 D 20. The corresponding values of OR, P , and other statistics are given
in Table 2.
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signal-to-noise ratios are made to vary through a large range of values, from high to low. For the highest
intensities, .x1; x2/ D .100; 400/, as expected fR.R/ is strongly peaked about R D 4. However, even in this
limit, the 68% con� dence interval for R (corresponding to a width of two standard deviations for a normal
distribution) is [3, 5], so that even when the signal-to-noise ratios are relatively large, .x1=¾1; x2=¾2/ D
.5; 20/, the actual fold-change cannot be inferred to anything better than 3 R 5.

With decreasing signal-to-noise ratio, the distribution fR.R/ not only broadens, but its maximum (mode)
shifts downwards. Thus, in Fig. 3 for the intensities (10, 40) the median of the distribution is about 2.2, with
the mode of the distribution now occurring very close to 1. The broadening and shifting of the distribution
function indicates how, for weakening signals, the simple ratio x2=x1 of the intensities becomes a less and
less reliable indication of the actual fold-change. In the limit where both intensities are zero, (0,0), we
recover the Cauchy distribution of Equation (39): the distribution is very broad, with median R D 1 and a
peak at R D 0, and little can be inferred about the actual value of R.

4.1. Departures from Gaussianity

The model underlying the PFOLD algorithm assumes Gaussian noise, whereas measurements indicate
that the actual noise is only roughly Gaussian, with tails joining a central, approximately normal distribution.
For instance, for the distribution of absent genes shown in Fig. 1b, with standard deviation ¾bc D 560,
for x > 2¾bc the cumulative distribution function P .x ¸ x0/ is roughly proportional to an exponential
distribution of form exp.¡x0=a/, with a ¼ ¾bc . While we have not attempted to quantify this asymptotic
behavior in any more detail, we believe that the analytic results we have obtained so far will not be
qualitatively modi� ed in any fundamental way by the inclusion of these non-Gaussian features. This is
especially true of the important » 1=R2 asymptotic dependency of the distribution fR.R/ for large R,
which can be shown to be obtained with exponentially distributed as well as with Gaussian noise.

5. BAYESIAN ESTIMATION OF FOLD CHANGES

Equation (29) is all we need to perform Bayesian estimation of the fold-change R, based on knowledge
of the intensities x1 and x2 and of the corresponding noise terms ¾1 and ¾2. We de� ne the cumulative
distribution function

F .R0/ D P.R · R0/ D
Z R 0

0
fR.R/dR: (41)

As we have not been able to �nd a closed-form analytic expression for Equation (41), we simply evaluate
F .R/ using numerical integration, as described below. Based on the numerical values of F .R/, we can
then obtain all of the following (Fig. 4):

1) Fold-change estimator OR: We choose as estimator OR for the fold-change the median estimator

OR D Med.R/; (42)

that is, the value of R for which F .R/ D 1=2. Note that in general other estimators are possible, for
instance the MAP (maximum a posteriori probability) estimator or the mean (Van Trees, 1978). The mean
is not an option here, as fR.R/ does not have a � nite mean. The median estimator has the dual advantages
of robustness and symmetry under the transformation (R ! 1=R) and is the one adopted here. Formally,
the median estimator is one that minimizes the absolute value of the (estimate–actual value) error term
(Van Trees, 1978).

2) Con� dence limits Rp and R1¡p: given a probability p < 1, we de� ne the con�dence limits Rp and
R1¡p as the values of the corresponding quantiles,

F .Rp/ D p; (43)

F .R1¡p/ D 1 ¡ p: (44)
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FIG. 4. Graphical de� nitions for the estimators formally de� ned in Section 5: OR is the median of the distribution
fR .R/ (equal areas lie to the left and right of R D OR); Rp and R1¡p are the p-th and 1 ¡ p-th quantiles, respectively
(the areas to the left and right of Rp and R1¡p , respectively, are both equal to p, here with p = 0.2); the P-value

P is the probability that the fold-change was less than 1 and provides a test of the signi� cance of OR > 1. Note the
asymmetry of the distribution.

3) P-value for signi� cance of change: if OR ¸ 1, we can test the hypothesis R > 1 (“a signi� cant, positive
fold-change occurred in experiment 2 relative to 1”) by evaluating the probability of the complementary
hypothesis, R · 1, and de� ning this as the P-value P of the test for signi� cant change. A symmetrical
expression is used if OR < 1. The resulting prescription is

P D
(

F .1/; OR ¸ 1;

1 ¡ F .1/; OR < 1:
(45)

Note that by the one-sided nature of the test, the P-value is con�ned to the range 0 · P · 0:5.
The quantity P as de� ned by Equation (45) is not, strictly speaking, a P-value; the latter is typically

de� ned in the context of a given null hypothesis, which may or may not be rejected given the outcome of
a test, whereas here P assesses the probability of an alternative outcome, given a single model which is
assumed uniformly valid. However, because P provides a useful measure of signi� cance, and furthermore
is well approximated by an actual P-value (see Equation (46) below), we shall continue to describe it,
rather loosely, as a “P-value.”

Results for all the measurement pairs discussed in connection with Fig. 3 are shown in Table 2 below,
with con�dence limits determined by p D 0:16. Note that the P-value provides a useful selection criterion

Table 2. Fold-Change Estimate OR and Associated Statistics for Each of the
Intensity Pairs .x1; x2/ Illustrated in Fig. 3a

x1 x2 Rp OR R1¡p P PS

100 400 3.3 4.0 5.0 ¼ 0:0 ¼ 0:0
50 200 2.8 3.9 6.5 5:98 £ 10¡8 5:70 £ 10¡8

25 100 2.0 3.6 8.8 4:47 £ 10¡3 4:00 £ 10¡3

10 40 0.93 2.2 7.3 0.18 0.14
5 20 0.51 1.5 5.7 0.34 0.30
1 4 0.32 1.1 4.6 0.46 0.46
0 0 0.23 1.0 4.4 0.5 0.50

aRp D lower con� dence limit for R (p D 0:16); OR D median estimator for R; R1¡p D upper
con� dence limit for E (1 ¡ p D 0:84); P D P-value; and Ps D approximation to P , Eq. (46).
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for retaining only signi� cant measurements. Thus, while in Table 2 all intensity ratios are equal to 4
(except for (0,0)), only the � rst three entries ((100, 400), (50,200), (25,100)) are found to indicate change
at the 0.05 con� dence level. Furthermore, for each of the entries which are deemed signi� cant, we can
provide con� dence limits for the fold-change. For instance, for the measurement pair (25, 100), with
P D 4:47 £ 10¡3, the estimate of OR D 3:6 is bracketed by [2.0, 8.8], showing that in this case we cannot
“nail” the fold-change to anything better than this interval (i.e., at the 68% con� dence level fold-changes
as small as 2 and as large as 8.8 are also consistent with the data).

An approximation PS for P is based on a simple one-sided test of the signi� cance of the difference
x2 ¡ x1,

PS D erfc

³
jx2 ¡ x1j

21=2.¾ 2
1 C ¾ 2

2 /1=2

!
: (46)

where erfc is the complementary error function (Abramowitz and Stegun, 1972). Values of PS are listed
in Table 2, where it can be seen that PS is slightly smaller than P (and therefore slightly overestimates
statistical signi� cance), because the test in Equation (46) does not incorporate the positivity of the concen-
trations. Nonetheless, Equation (46) generally provides a very good approximation to P and can be used
as a simpler formula than extraction from Equation (29). Note, however, that computation of OR (Equation
(42)) and of the con� dence limits Rp and R1¡p (Equations (43) and (44)) explicitly require the complete
formula given in Equation (29).

5.1. Computer implementation: the PFOLD algorithm

The estimation scheme described above and summarized by Equations (29) and (42–45) has been im-
plemented in a C++ program called PFOLD. For a given set of input parameters .x1; x2; ¾1; ¾2/ specifying
the two intensities and the corresponding standard deviations of the noise terms, PFOLD � rst numerically
evaluates the distribution function fR.R/ (Equation (29)) over a � nite range Rmin · R · Rmax at points on
a regular mesh Ri D Rmin C i1R, i D 0; 1; : : : ; N , where Rmin, Rmax and N (1R D .Rmax ¡ Rmin/=N)
are automatically chosen to capture all of the variation of the function (Fig. 3). The cumulative distribution
function F .R/ (Equation (41)) is then found by numerical integration of fR.R/, following which all the
estimators of Section 5, that is the fold change OR, the con�dence limits .Rp; R1¡p/, and the P-value P ,
can be readily evaluated by numerically solving for Equations (42), (43), (44) and (45), respectively. In
� nding the roots of these equations, a simple bisection method (Press et al., 1997, p. 353) is used.

5.2. Mapping intensity pairs .x1; x2/ into the . OR; P / plane

Pairs of intensities .x1; x2/ are mapped by Equations (42) and (45) into pairs of numbers . OR; P /, a
mapping which results in a signi� cance-weighted representation of the fold-changes. Figures 5a,b illustrate
how mapping into the . OR; P / plane provides a useful, alternative representation of experiments. Here,
identical RNA samples were hybridized to two Affymetrix chips of the same type (Mu19KsubA, with
features for 7,045 genes), with the data shown in Fig. 5a where the intensity pairs .x1; x2/ are displayed
in a scatter plot where each point represents one gene. In the �gure, 4,761 genes are visible; the remaining
2,284 have a negative intensity in one or both of the scans, and are invisible in the log–log plot. Note also
that the slight leveling off of the line of the scatter plot for the largest intensities, x1; x2 > 10; 000, is due
to saturation effects.

Based on the representation of Fig. 5a, a “traditional” way of selecting for genes with signi� cant change
is to require that the fold-change R or its inverse 1=R is above a given threshold Rc , with R directly
computed from the ratio of intensities, R D x2=x1. In Fig. 5a, the decision boundaries for Rc D 2 are
indicated, with the acceptance region outside the two parallel lines. Because this procedure also selects for
a large number of genes with very low signal-to-noise ratio, one usually limits each of the intensity values
entering into the ratio calculation x2=x1 to some lower bound, representative of the noise level. However,
here we circumvent this device and instead directly use the PFOLD prediction for the fold-change, selecting
genes with OR ¸ Rc or OR · 1=Rc . The result is shown in Fig. 6a for Rc D 2, with 83 genes shown in the
scatter plot.
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FIG. 5. Scatter plots showing two alternative views of a reproducibility experiment, in which identical samples
derived from murine intestine tissue, here labeled 1 and 2, were hybridized to two Affymetrix chips of the same type
(Mu19KsubA, features for 7,045 genes). a) Representation in the .x1; x2/ plane: each point in the plot corresponds
to one gene (scan 2 was rescaled by an overall factor of 0.73 to make its mean brightness equal to that of scan 1, so
that the line of symmetry has slope 1). In a) 4,761 genes out of 7,045 are visible in the log-log plot, the remaining
2,284 having a negative intensity in one or both of the scans. b) Representation in the . OR; P / plane. All 7,045 genes
are present in this plot.

A drawback of the selection method outlined above is the risk of “throwing out the baby with the
bathwater”; in the interest of controlling false positives, we may have to impose such a large value of Rc

that high intensity genes with signi� cant change will be rejected as well. An alternative representation of
the data, which allows for more � exibility in operating selections, is the one shown in Fig. 5b, where each
gene is now mapped into the . OR; P / plane (all 7,045 genes are shown). The important property of this new

FIG. 6. Two subsets of genes selected from the data in in Figs. 5a,b, in ways suggested by the .x1; x2/ or . OR; P /

representations, respectively. a) Select for genes with greater than 2-fold change in 2 relative to 1, using the PFOLD
estimate of OR (83 genes are obtained); b) select for genes with P-value P less than 0.15 (73 genes are obtained).
Figs. a) and b) have 41 genes in common.
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representation is that one can do selections for subsets of genes which are based on both the fold-change
and P-value. Thus, in Fig. 6b we selected for genes with a P-value less than 0.15, with no constraint on
the fold-change, resulting in the 73 genes shown. Note that while roughly the same number of genes are
selected in Figs. 6a and b, the populations only partially overlap, with 41 genes in common. In particular,
the use of the P-value for selections enables one to �nd high-intensity genes with signi� cant fold-change
(although less than 2), while simultaneously � ltering out noisy, low-intensity data (compare Figs. 6a and
6b.) The expectation is thus that by making selections based on both P and OR, one should obtain detection
which is more sensitive, at equal selectivity, than selections based on OR alone. We examine this assumption
in the next two sections.

6. THEORETICAL VALIDATION BY MONTE CARLO SIMULATIONS

In order to evaluate the usefulness of the PFOLD algorithm, we conducted Monte Carlo simulations
(Cowan, 1998, p. 41; Press et al., 1997, p. 689) aiming to approximate actual experiments, with a focus
on the ability of PFOLD to discriminate a class of genes with a given fold-change in expression from
a “background” class of genes with unchanging expression levels. To approximate a physical distribu-
tion, concentration values n (normalized as in Equation (12)) were generated according to a log-normal
distribution (Keeping, 1995, p. 89), by computing

n D exp.y/; (47)

where y is a Gaussian random variable generated with mean and standard deviation < y > D 6:56 and
¾y D 1:22, respectively. To get an indication of the range of concentrations implied by these values,
note that the 25th, 50th, and 75th percentiles of n are .300; 700; 1600/, respectively, which are typical of
experiments using Affymetrix chip technology.8

For each value of n generated by Equation (47), an actual fold-change of b, combined with noise, was
simulated by computing the two intensity values

x1 D n C ²1; (48)

x2 D bn C ²2; (49)

where the noise terms ²1 and ²2 are uncorrelated Gaussian random variables with zero means and with
equal standard deviation ¾² given by Equation (15) with parameters ¾bc D 300, ® D 0:25, again chosen
to be typical of Affymetrix chip experiments. The value ¾bc D 300 implies that in this model the lowest
quartile of genes have intensities below or at most comparable to the noise level. The parameters chosen
for the simulations are close to the “typical” values indicated in Table 1, but result in a slightly smaller
median signal-to-noise ratio, xm=¾²m D 2 versus of 2.2.

From the intensities .x1; x2/ computed with Equations (48) and (49), the corresponding estimators . OR; P /

were then computed using Equations (42–45), with PFOLD parameters .¾bc; ®/ identical to those used in
generating the data. While in experiments values of b as large as 100 can be measured, the bulk of genes
which change signi� cantly are expected to vary with fold changes in the range 1 b 5. In what follows,
we initially focus on b D 3, then explore the effect of variation over a � nite range of b.

6.1. Validation methodology

We conducted two simulations, with b D 1 and b D 3, de�ning the two classes of genes,

class 0: no change, b D 1,
class 1: change, b D 3.

8The numbers are representative of scans of Affymetrix chips where the � uorescence intensities are enhanced by
antibody staining.
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We then used PFOLD to classify genes by de� ning an acceptance region D in the . OR; P / plane (Cowan,
1998, p. 47), and with prediction ¼ for the class membership of a gene given by

¼ D
(

p; assign gene to class 1, if. OR; P /inD;

a; assign gene to class 0, if. OR; P /not inD;
(50)

where p and a stand for present and absent in the acceptance region, respectively. An example of an
acceptance region D is one with a rectangular decision surface

D D f OR ¸ Rc; P · Pcg; (51)

but we considered other types of regions as well. Figures 7a and b display the . OR; P / scatter plots generated
by 1,000 genes from class 0 (the no-change class) and 1,000 genes in class 1 (the genes that changed
3-fold), respectively. In Fig. 7a, the boundaries of two acceptance regions, to be discussed in detail below,
are indicated.

For a given D, one can estimate the misclassi� cation probabilities

P .pj0/ = probability that a gene in class 0 gets assigned to class 1,
P .aj1/ = probability that a gene in class 1 gets assigned to class 0,

by directly counting the number of misclassi� cation errors resulting from each simulation.
The model also uses as input the a priori probabilities

² P0 D a priori probability that a gene is in class 0,
² P1 D a priori probability that a gene is in class 1.

The values expected for P1 are context-dependent, but will typically be small, as in many experiments
only a small proportion of genes are actually changing in response to a perturbation or induction event.
A biologically realistic range might be taken to be P1 » 0:01 ¡ 0:2 (1% to 20% of genes changing
signi� cantly).

FIG. 7. Scatter plots in the . OR; P / plane generated by the Monte Carlo methods described in Section 6, for the actual
fold-changes b D 1 and b D 3. a) Class 0 (the no-change class, b D 1); b) class 1 (b D 3). The decision boundaries
corresponding to tR D OR and tP D P are indicated in a).
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From the Bayes Theorem we obtain the a posteriori probabilities for misclassi� cation, de� ned as

² P .0jp/ D probability that a gene assigned a signi� cant fold-change did not really change,
² P .1ja/ D probability that a gene assigned to the no-change category actually changed.

The result is (Cowan, 1998, p. 49)

P .0jp/ D P0P .pj0/=Pp; (52)

P .1ja/ D P1P .aj1/=Pa; (53)

where Pp and Pa , the total a posteriori probabilities of declaring a gene in class 1 or class 0, respectively,
are given by

Pp D P .pj0/P0 C P .pj1/P1; (54)

Pa D P .aj0/P0 C P .aj1/P1; (55)

where all the conditional probabilities on the right-hand sides of Equations (52–55), P .pj0/; P .aj1/, etc.,
are estimated by direct counting of simulation events.

In order to evaluate the performance of PFOLD on the classi� cation task, we focused on two metrics,
a false-positive rate FP, and a sensitivity S, de� ned as follows:

FP D P .0jp/ D a posteriori false positive rate; (56)

S D P .pj1/ D 1 ¡ P .aj1/

D a priori true positive rate: (57)

The de� nitions of Equations (57) and (56) are not symmetrical because the calculation of P .0jp/ requires
the value of the prior P1, while the computation of P .pj1/ does not. The reason for this choice are the
following: the a posteriori false-positive rate FP is a measure of the “contamination” (Cowan, 1998, p.
47) by spurious candidates of a gene list picked by the PFOLD classi� cation. In the context of a search
for drug targets, for instance, after picking, the gene list would be submitted to an experimental validation
pipeline. The quantity FP is a direct measure of wasted effort (on spurious candidates) that would be
expected downstream in the pipeline, and thus can be directly equated to a cost. The sensitivity S, on the
other hand, is a measure of the ef� ciency (Cowan, 1998, p. 47) of the classi� cation scheme in � nding
targets among all those actually in existence. As usual, the stringency of the decision process must be
adjusted so as to balance FP and S in some optimal way, as discussed below.

6.2. Simulation results

A summary of the simulation results for classi� cation is shown in Table 3, where we have based
the evaluation of PFOLD performance on the so-called “receiver operating characteristic” (ROC) (Van
Trees, 1978) for the various statistics used. The ROC enables one to visualize the tradeoffs in trying to
simultaneously minimize false-positive and false-negative rates. Thus, in Fig. 8, the ROC based on the data
of Figs. 7a,b is shown for the decision statistic tR D OR, corresponding to the acceptance region (Fig. 7a)

DR D f OR ¸ Rcg: (58)

The false-positive rate P .0jp/ and false-negative rate P .aj1/ are plotted as functions of the cutoff Rc for
P1 D 0:2 (20% a priori probability that a gene actually changed). At the very lowest stringency, Rc D 0,
all genes are indiscriminately accepted, so that P .aj1/ D 0, P .0jp/ D P0 D 0:8. As Rc is increased, the
false-positive rate decreases, but there is a concomittant rise in the false-negative rate. Thus, the choice of
the “optimal” cutoff Rc depends on deciding on an acceptable compromise between the error rates. For
instance, if a false-positive rate FP D P .0jp/ D 0:3 is given as the largest acceptable (30% of accepted
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Table 3. Performance of Three Statistics Used for the Detection of Genes with
True Fold-Change of b D 3 (class 1) against a Background of Unchanging Genes

(class 0), as Simulated by the Monte-Carlo Method Described in Section 6a

Decision parameters Results for constant F.P. rate P .0jp/ D 0:3

Sensitivity Median fold-change
Main statistic t Region tc S D P .pj1/ Med. OR/

Fold-change OR ¸ tc 4.37 0.24 6.1
tR D OR P · 0:5
P-value P · tc , 0.037 0.52 4.2
tP D P OR ¸ 1
Discriminant t ¸ tc 0.95 0.50 4.4
tF D log. OR/ ¡ 5:48P

aThe fraction of changing genes is P1 D 0:2, and performance is given for a “clamped” false-positive
rate of FP D P .0jp/ D 0:3. For each case, we specify: the acceptance region used in connection with the
statistic; the value tc of the statistic for FP D 0:3; the corresponding sensitivity S obtained for FP D 0:3;
and the median of the predicted fold-changes for all the accepted genes.

genes spurious hits), then Rc D 4:37, at which point the sensitivity is S D P .pj1/ D 1 ¡ P .aj1/ D 0:24
(only 24% of all positives are actually detected; see Table 3). Note also that the false-positive rate levels off
as a function of Rc for Rc large, so that it cannot be made arbitrarily small, even when reduced sensitivity
is acceptable; this is because in Equations (52, 54), de� ning P .0jp/, both P .pj0/ and P .pj1/ have the
same asymptotic trend as Rc ! 1.

FIG. 8. Receiver operating characteristic (ROC) for the statistic tR D OR, with decision surface given by Eq. (58),
using the data generated by the Monte Carlo simulations of Section 6 for an actual fold-change of 3 against a
background of unchanging genes, and with a � xed prior probability of change P1 D 0:2. The decision boundary
is at R D Rc; increasing Rc increases the stringency of the acceptance process by selecting for larger-and-larger
fold-changes. The curve marked F.P. is the false-positive rate FP as a function of Rc (Eq. (56)), the curve labeled F.N.
is the false-negative rate (1 ¡ S, with S given by Eq. (57)). The point at which FP D 0:3 (S D 1 ¡ 0:76 D 0:24) is
indicated in the � gure.
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In Fig. 9, we show the ROC for a second decision statistic, tP D P , used in conjunction with the � xed
� lter OR ¸ 1. The acceptance region is the rectangle (Fig. 7a)

DP D fP · Pc; OR ¸ 1g: (59)

The false-positive rate P .0jp/ D 0:3 is now achieved with Pc D 0:037, with the sensitivity S D P .pj1/ D
0:52 (Table 3), over twice the sensitivity achieved by the tR statistic. The tP statistic also has the advantage
over the tR statistic that there is no leveling off of the false-positive rate P .0jp/, which here can be
inde� nitely reduced by taking Pc ! 0.

For each statistic, the median values of OR for the population of detected genes are given in Table 3,
giving an indication of the accuracy of quantitation of the fold-change (the exact value should be 3). While
in both cases there is an upward bias resulting from the acceptance process, it can be seen that the effect
is weaker for the tP statistic, yielding a more accurate estimate of the fold-change.

In Table 3, we also indicate the results obtained using a Fisher linear discriminant (Duda and Hart,
1973) based on an analysis in .log. OR/; P / space. Computing scatter matrices while restricting the data to
OR ¸ 1, the Fisher discriminant is found to be

tF D log. OR/ ¡ 5:48P ; (60)

with results shown in Table 3. Because the sensitivity obtained with tF is not better than that found with
the simpler tP , we did not pursue the use of this statistic, although it might prove useful in other contexts.

In Fig. 10, the dependence of the sensitivities on P1, the fraction of the total gene population that has
actually changed, is explored for both tR and tP statistics. In obtaining these results, the false-positive rate
is “clamped” to the constant value P .0jp/ D 0:3. For P1 > 0:5 (more than half the genes changing, not
shown in the � gure), the sensitivities are almost equal, and on the basis of sensitivity, there is no reason
to prefer one statistic over the other. On the other hand, for the range P1 · 0:5 shown in the � gure, which
is biologically much more relevant, the sensitivity obtained with tP is markedly superior. Furthermore,

FIG. 9. Receiver operating characteristic (ROC) for the statistic tP D P with decision surface given by Eq. (59),
using the data generated by the Monte Carlo simulations of Section 6 for an actual fold-change of 3 against a
background of unchanging genes, and with a � xed prior probability of change P1 D 0:2 (compare with Fig. 8). The
decision boundary is at P D Pc ; decreasing Pc increases the stringency of the acceptance process by selecting for
changes with greater signi� cance. The curves marked F.P. and F.N. are as in Fig. 8, with the point at which FP D 0:3
(S D 1 ¡ 0:48 D 0:52) indicated in the � gure.
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FIG. 10. Sensitivity as a function of P1, the fraction of genes that underwent a 3-fold change against a background
of unchanging genes, for the tR and tP statistics (denoted by SR and SP , respectively) using the data generated by
the Monte Carlo simulations of Section 6. The false positive rate FP D P .0jp/ is “clamped” to the value 0.3 for all
values of P1. The black dot indicates the breakdown of the decision process based on the tR statistic: below that point
the false positive rate cannot be kept at 0.3.

for P1 · 0:11, the selection based on tR cannot even maintain the required minimum false-positive rate
of P .0jp/ D 0:3, while the tP statistic can be used to arbitrarily small values of P1. At the point of
breakdown of the tR statistic, P1 D 0:11, the sensitivity for tP is about four times greater, with S D 0:42
versus S D 0:11 (42% of all changing genes detected by tP , versus only 11% by tR).

The dependence of the sensitivities on the fold-change b, for a constant fraction of changing genes
P1 D 0:2, is explored in Figs. 11a,b. As in Fig. 10, the false positive rate is kept � xed at P .0jp/ D 0:3.
Figure 11a shows that that the sensitivities are almost equal for b 5, so that detection of genes with
large fold-changes is about equal with both tR and tP statistics. On the other hand, the magni� cation to
the biologically important range 1 · b · 5, Fig. 11b, shows that for moderate to small fold-changes, the
tP statistic is de� nitely superior in sensitivity. In particular, detection with the tR statistic breaks down at
b D 2:3, as a false positive rate P .0jp/ D 0:3 cannot be maintained below that value of the fold-change.

In summary, a decision statistic based on the PFOLD P-value appears markedly superior in sensitivity
to one based only on the fold-change estimator OR, whenever one wishes to detect changing genes in the
biologically relevant range of P1 0:2 and 1 b 5.

6.3. Dependence of detector performance on the choice of PFOLD parameters

The analysis presented above used PFOLD parameters identical to those chosen in the � rst place to
generate the Monte Carlo simulation data. Because in the analysis of actual experiments the PFOLD
parameters will be at best only approximations to the actual parameters, we systematically investigated the
sensitivity of the results to variations in the choice of the PFOLD parameters.

In Fig. 12a, we show the dependence of the sensitivity S on the ratio of parameters ¾ pfold
bc =¾bc , where

¾ pfold
bc is the value used in PFOLD and ¾bc D 300, the value used in generating the simulation data. In this

study, the coef� cient of variation used in PFOLD is the same as in the simulations, ®pfold D ® D 0:25, and
S is calculated for �xed false-positive rate FP D 0:3 and �xed proportion of changing genes, P1 D 0:1.
As expected, the sensitivity is greatest when the model parameter coincides with that of the simulation



THE PFOLD ALGORITHM 607

FIG. 11. Sensitivity as a function of the true fold-change b, for a constant fraction of changing genes P1 D 0:2,
using the data generated by the Monte Carlo simulations of Section 6 and for decision based on the tR D OR or tP D P

statistics (denoted by SR and SP , respectively). The false positive rate FP D P .0jp/ is “clamped” to a �xed value of
0.3; a) dependence in the range 1 · b · 20; b) magni� cation to the range 1 · b · 5. The black dot indicates the
breakdown of the tR statistic as a function of b: below that point the false positive rate cannot be kept at 0.3.

data, ¾ pfold
bc D ¾bc , with performance falling off when ¾ pfold

bc 6D ¾bc . However, with overestimation of the
noise, ¾ pfold

bc > ¾bc , the degradation in detector performance is “graceful”: even for ¾ pfold
bc =¾bc D 2, the

sensitivity is still 85% of its maximum. On the other hand, underestimation the noise has more serious
consequences and leads to a rapid degradation in performance.

The dependence of the sensitivity S on the asssumed coef� cient of variation ®pfold is shown in Fig. 12b,
now for � xed ¾ pfold

bc D ¾bc and otherwise under the same conditions as in Fig. 12a. As before, sensitivity
is greatest when the model parameter coincides with the actual simulation parameter, ®pfold D ® D 0:25
(arrow). For ®pfold 6D ®, there is little degradation in performance in the range 0:1 · ®pfold · 0:3, with a
sharper dropoff outside of this range.

In a � nal set of numerical experiments, we investigated the effect of introducing a nonzero correlation
coef� cient ½ between the noise terms used in the simulations (Equation (17)), thereby changing the
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FIG. 12. Dependence of detector performance on the choice of PFOLD parameters. Throughout, the sensitivity S is
calculated for a � xed false-positive rate FP D 0:3 and � xed proportion of changing genes, P1 D 0:1, for the simulation
data of Section 6 (¾bc D 300, ® D 0:25). a) Dependence of S on ¾ pfold

bc =¾bc where ¾ pfold
bc is the value used by the

PFOLD noise model, and with ®pfold D ®. Note the breakdown of the scheme at the limiting value ¾ pfold
bc =¾bc D 0:41,

below which the false-positive rate of 0.3 cannot be maintained. b) Dependence of S on ®pfold for ¾ pfold
bc D ¾bc ; the

point where ® D 0:25 is indicated by an arrow.

statistical nature of the data, while maintaining ¾ pfold
bc D ¾bc and ®pfold D ®, and with PFOLD itself

not incorporating a correlated noise model. Under the same conditions of detection as above (FP D 0:3,
P1 D 0:1), the sensitivities computed for ½ D 0, 0.5, and 0.8 were S D 0:4, 0.59, and 0.63, respectively.
These results show that with correlated noise, detection actually becomes “easier,” even for for the current
version of PFOLD, which does have a correlated noise model.

In summary, PFOLD does not display extreme sensitivity to the choice of model parameters and is
robust to changes in the statistical nature of the noise used in generating the simulation data. Based on the
results shown in Figs. 12, in choosing parameters for PFOLD estimation, it is preferable to overestimate
¾bc rather than underestimate it and, inversely, to slightly underestimate ® rather than overestimate it.

7. EXPERIMENTAL VALIDATION BY cRNA SPIKING EXPERIMENTS

While Monte Carlo simulations enable one to explore the parameter space relevant to the PFOLD
algorithm, they are no substitute for actual experiments. Thus, a set of cRNA9 spiking experiments was
designed to apply the decision methodology used in the previous sections to a realistic setting.

Thirteen cRNA probe samples targeting a total of 13 genes featured on the Affymetrix Mu11KsubA
chip were separately produced by in vitro transcription of the corresponding cDNAs and spiked together
at known concentrations into a complex, biological background of cRNAs derived from MC3T3 cell
lines. Spiking concentrations of 0 pM (no spike, background only) and 5, 15, and 50 pM were chosen
to approximate a range of naturally occurring concentrations. The resulting spiked samples were then
hybridized to Mu11KsubA chips. For the 0 pM, background-only sample, all 13 genes were signaled as
“absent”by the Affymetrix GeneChip decision algorithm.10 We took this result as suf� cient indication that

9See footnote 2 on page 587.
10See footnotes 3 on page 587 and 5 on page 589.
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the corresponding mRNA transcripts were physically absent (or present in only negligible concentrations)
in the complex background, so that the total, in-background concentrations for the 13 genes could be
assumed equal to the known concentrations of the spikes alone.

Based on the intensity data obtained from the chip scans, the . OR; P / values were then computed using the
PFOLD algorithm for all 13 genes and for the sample pairs (5pM, 15pM) and (15pM, 50pM), corresponding
to actual fold-changes of 3 and 3.33 respectively. The 26 resulting values of . OR; P / were then pooled
together, the resulting composite data set simulating a total of 26 distinct genes changing expression
by about 3-fold, against a complex background of many unchanging genes, and with a distribution of
initial concentrations equally split between 5 and 15 pM. This composite data set can be regarded as a
crude approximation to the actual situation of a much larger number of genes changing 3-fold, against a
large background of unchanging genes, and starting from a continuous and broad distribution of initial
concentrations (rather than just the two values considered here).

The average intensities for the 13 spiked genes at the 5 and 15 pM concentrations were 700 and 1,300,
respectively, corresponding to the median and 75th percentiles of the 2,900 genes signaled “present”on the
chip (out of a total of 7,045); thus, the spiking experiments simulated what would be the up-regulation, in a
biological setting, of the genes which are among the moderate to high expressors, but not the concomittant
up-regulation of the low expressor genes, which would signal at or below the 25th percentile in intensity.

Figs. 13a and b display the scatter plots in the . OR; P / plane based on either a repeat experiment of the
background-onl y sample (Fig. 13a, de� ning class 0, of no-change genes) or on the 26 values of . OR; P /

obtained from the spiking experiments (Fig. 13b, de� ning class 1, of changing genes). In Fig. 13b, the 13
points corresponding to the 15pM:50pM concentration ratios are indicated by black dots and the 13 points
for the 5pM:15pM concentration ratios by open circles; not surprisingly, most of the P-values for the
changes at the higher concentrations (higher signal-to-noise ratios) are markedly smaller than those for the
changes at lower concentrations.

The same sensitivity analysis based on receiver operating characteristics was performed on this data set
as had been performed for the Monte Carlo simulations (Section 6.2). Note that although only 26 data
points are provided to de� ne class 1, whereas 7,045 are provided for class 0, the data can be used to
estimate sensitivity for any a priori probability of change P1 through Equations (52–55). In Fig. 14 the

FIG. 13. Scatter plots in the . OR; P / plane for the validation spiking experiments discussed in Section 7; a) class
0, no change: plot for the 6,584 genes on the Mu11KsubA chip, derived from replicates of the background-only
hybridization; b) class 1, 3-fold change: plot for the 26 . OR; P / pairs obtained from the spikes at �nite concentrations;
black dots: points for the 15pM:50pM concentration ratios; open circles: points for the 5pM:15pM concentration ratios.
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FIG. 14. Sensitivity as a function of the fraction P1 of changing genes, using the data generated by the spiking
experiments, and shown in Fig. 13 (Section 7). The false positive rate FP D P .0jp/ is “clamped” to the value 0.3.
The dependency of the sensitivity on P1 is shown for both tR D OR and tP D P decision statistics (denoted by SR

and SP , respectively).

sensitivity S is plotted as a function of P1, for both the tR D OR (Equation (58)) and tP D P (Equation (59))
statistics, for a “clamped” value of the false-positive rate P .0jp/ D 0:3.

The experimental results for the sensitivity shown in Fig. 14 con� rm the results of the Monte Carlo
simulations (Fig. 10) in that for small P1 (P1 0:03) the tP decision statistic becomes markedly superior
to the tR statistic. A salient difference however is that, based on the experimental data, sensitivity for
tP is superior when P1 0:03 ( 3% of changing genes), whereas the the Monte Carlo simulations
suggest a larger range, P1 0:3 ( 30% of changing genes). We believe that this dicrepancy arises
from an overestimation of the noise in the Monte Carlo simulations relative to the experimental setup: the
Monte Carlo simulations assume strictly uncorrelated noise, ½ D 0, whereas in the spiking experiments
the arti� cially unchanging nature of the background impose a correlation coef� cient ½ » 1, which results
in signi� cantly less variance in the fold-change R, as is shown in Appendix B. In actual experiments,
tracking expression levels across a changing background, an intermediate value ½ ¼ 0:7 is expected
(Table 1), resulting in an intermediate value for the P1 sensitivity divergence point.

8. CONCLUSIONS

A general noise model for the measurement of expression levels by microarrays was presented and
then systematically used to derive a Bayesian scheme for estimating expression ratios. This scheme is
currently implemented as the “PFOLD” algorithm. The PFOLD algorithm not only provides an estimate
of the fold-change in expression and its con� dence limits, but also assigns a P-value which gauges the
signi� cance of the change; in this respect, it is analogous to the BLAST algorithm for sequence matching,
which also returns a P-value quantifying the signi� cance of a result. The PFOLD output in turn generates
a new, two-dimensional representation of the data in which one axis can be thought of as gauging quantity
(the fold-change) and the other quality (signi� cance through the P-value).

Monte Carlo simulations and cRNA spiking experiments indicate that the two-dimensional representation
afforded by PFOLD is quite useful at the fundamental task of discriminating in a given experimental context



THE PFOLD ALGORITHM 611

the genes with signi� cant change from a large background of unchanging genes. Thus, at equal selectivity,
use of the P-value as a decision statistic allows for markedly greater sensitivity than is obtained with the
fold-change alone.

One consequence of using the PFOLD noise model is that noise parameters are carried alongside
intensities on an equal footing, a state of affairs which will in� uence the choice of data structures and
database schema in any set of expression analysis tools (GATC, 1998).

Current work-in-progress on PFOLD includes the full implementation of the correlated noise model
presented in this paper but not yet fully integrated in the algorithm.

In summary, by providing a general and explicit noise model for microarray measurements, we have
allowed for the systematic development of estimators of change and signi� cance in gene expression, with
the PFOLD algorithm as a speci� c, tested implementation.

APPENDIX A: BIAS AND VARIANCE OF THE ESTIMATOR FOR ¾²

In Equation (16) we write x D n C ² and obtain the explicit dependence of the estimator O¾² on the
random variable ² ,

O¾ 2
² D ®2.n2 C 2²n C ²2/ C ¾ 2

bc : (61)

Taking the mean of Equation (61) and using < ² >D 0, < ²2 >D ¾ 2
² , we obtain the second moment of O¾² ,

< O¾ 2
² >D .1 C ®2/¾2

² ; (62)

where ¾ 2
² is given by Equation (15). By taking the square root of Equation (61) and systematically

expanding in a Taylor series in ®2, initially keeping terms up to and including O.®6/, and then taking
the average, one obtains an expansion for the mean < O¾² >. By combining this result with Equation (62),
an expansion for the variance is obtained as well. The � nal results for bias and variance can be written
relative to ¾² and ¾ 2

² , respectively, and take the form

< O¾² > ¡¾²

¾²
D

®2

2
¡

®4

8

³
4n2

¾ 2
²

C 3
´

C O.®6/; (63)

< O¾ 2
² > ¡¾ 2

²
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³
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¾ 2
²
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1

2

´
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³
4n2

¾ 2
²

C
27

8

´
C O.®8/: (64)

These equations have two simple limits: 1) when n ¿ ¾bc (low concentration limit), ¾² ! ¾bc , and we
have

< O¾² > ¡¾²

¾²
D

®2

2
C O.®4/; (65)

< O¾ 2
² > ¡¾ 2

²

¾ 2
²

D
®4

2
C O.®6/: (66)

It can be seen that with values of ® that are moderately small (say, ® 0:25), the relative bias and variance
are both small in this limit. 2) When ®n À ¾bc (high concentration limit), ¾² ! ®n, and we have in turn

< O¾² > ¡¾²

¾²
D

15
8

®4; (67)

< O¾ 2
² > ¡¾ 2

²

¾ 2
²

D ®2.1 ¡ ®2/ C O.®6/: (68)
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In this limit, the bias is small, and the largest uncertainty arises from the variance. Neglecting all terms
above ®2, Equations (67) and (68) can be rewritten in terms of con�dence limits

¾² D O¾² § ®¾² : (69)

Equation (69) shows that ® is simply the measure of the fractional error in estimating ¾² using O¾² .

APPENDIX B: CORRELATED NOISE MODEL

The derivation of the a posteriori distribution of fold changes can be readily extended to include corre-
lations between the noise terms. Once again we assume two intensity measurements

x1 D n1 C ²1; (70)

x2 D n2 C ²2; (71)

but in which the noise terms ²1 and ²2 are now jointly Gaussian, with zero means and variances ¾ 2
1 and

¾ 2
2 respectively, and a nonzero correlation coef� cient ½,

½ D
< ²1²2 >

¾1¾2
: (72)

Equation (28) now reads

fR.Rjx1; x2/ D
Z 1

0
dn1

Z 1

0
dn2±

³
n2

n1
¡ R

´
P.n1; n2jx1; x2/; (73)

where P.n1; n2jx1; x2/ is the joint probability distribution of n1 and n2,

P.n1; n2jx1; x2/ D
P.x1; x2jn1; n2/P.n1/P.n2/

P.x1; x2/
: (74)

where P.n1/ and P.n2/ are the (independent) priors for the concentration, Equation (20), and where
P.x1; x2jn1; n2/ is the joint conditional probability distribution (Cowan, 1998, p. 34)

P.x1; x2jn1; n2/ D
1

2¼¾1¾2.1 ¡ ½2/1=2

exp

³
¡

1

2.1 ¡ ½2/

³
.x1 ¡ n1/2

¾ 2
1

C
.x2 ¡ n2/2

¾ 2
2

¡ 2½
.x1 ¡ n1/.x2 ¡ n2/

¾1¾2

!!
: (75)

The normalization term P.x1; x2/ is obtained by integrating the numerator over n1 and n2, in analogy with
the derivation followed in Equations (21–24).

The integration indicated in Equation (73) results in the distribution function for R in the form (dropping
the explicit dependence on x1 and x2 in fR.Rjx1; x2/),

fR.R/ D
1

2¼¾1¾2.1 ¡ ½2/1=2D.x1; x2/
exp

³
¡

x2
1 .R ¡ R0/2

2.¾ 2
2 .1 ¡ ½2/ C .R ¡ ½¾2=¾1/2¾ 2

1 /

!
J .x1; x2/; (76)

where R0 ´ x2=x1, and where J .x1; x2/ is de� ned by
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where
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The normalization constant D.x1; x2/ is given by

D.x1; x2/ D
1

4

±
1 C erf.x1=

p
2¾1/
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1

2

Z 1

¡x1=¾1

dt

.2¼/1=2
exp.¡t2=2/erf

³
x2=¾2 C ½t

p
2.1 ¡ ½2/1=2

´
: (80)

Because D.x1; x2/ is a normalization constant, in a numerical computation the explicit evaluation of
Eq. (80) can be replaced by a normalization step, following the evaluation of fR.R/ in Equation (76)
without the factor 1=D.x1; x2/. Thus, the explicit calculation of the right-hand side of Equation (80) is not
necessary in a computer program implementation of the estimation scheme.
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