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A supervised classification scheme for analyzing microarray expression data, based on the k-nearest-neighbor
method coupled to noise-reduction filters, has been used to find genes involved in the osteogenic pathway of
the mouse C2C12 cell line studied here as a model for in vivo osteogenesis. The scheme uses as input a training
set embodying expert biological knowledge, and provides internal estimates of its own misclassification errors,
which furthermore enables systematic optimization of the classifier parameters. On the basis of the
C2C12-generated expression data set with 34,130 expression profiles across 2 time courses, each comprised of 6
points, and a training set containing known members of the osteogenic, myoblastic, and adipocytic pathways,
176 new genes in addition to 28 originally in the training set are selected as relevant to osteogenesis. For this
selection, the estimated sensitivity is 42% and the posterior false-positive rate (fraction of candidates that are
spurious) is 12%. The corresponding sensitivity and false-positive rate for detection of myoblastic genes are 9%
and 31%, respectively, and only 4% and ∼100%, respectively, for adipocytic genes, in accordance with an
experimental design that predominantly stimulated the osteogenic pathway. Validation of this selection is
provided by examining expression of the genes in an independent biological assay involving mouse calvaria
(skull bone) primary cell cultures, in which a large fraction of the 176 genes are seen to be strongly regulated, as
well as by case-by-case analysis of the genes on the basis of expert domain knowledge. The methodology should
be generalizable to any situation in which enough a priori biological knowledge exists to define a training set.

[Online supplementary material available at www.genome.org]

In recent years, much use has been made of clustering meth-
ods in the analysis of some of the large gene expression data
sets generated by microarrays (Eisen et al. 1998; Wen et al.
1998; Alon et al. 1999; Ben-Dor et al. 1999; Tamayo et al.
1999; Alizadeh et al. 2000; Ross et al. 2000). Such unsuper-
vised methods of data organization are very well suited to
situations in which there is little a priori knowledge regarding
the expected behavior of gene expression in the given bio-
logical system. However, clustering methods also suffer from
the fact that they are in part qualitative exploratory tools,
ideally suited for visualization, but not as well adapted for
precisely defining class boundaries between groups of genes,
nor for estimating error rates in classification.

In this study, we present an alternative approach for clas-
sifying genes based on a well-known supervised learning
method, the so-called k-nearest-neighbor (kNN) method
(Duda and Hart 1973; Fukunaga 1990). This method is applied
to finding genes in the differentiation pathways of a well-
characterized system, the pluripotent mouse C2C12 cell line
(Katagiri 1994), with a focus on the genes involved in the
osteogenic pathway. The premise of the method is that one
first constructs a training set. This training set is a collection
of genes that is a subset of the data set under investigation,

and for which precise class memberships can be assigned. The
definition and choice of the training set classes is determined
by the biological context and by the types of questions being
asked of the data; in the present case, each class represents a
different differentiation pathway. Once the training set has
been defined, the remaining genes in the data set can be clas-
sified, that is, assigned to one of the classes in the training set.
In the kNN method, this is done by a voting scheme in which
the class memberships of the k-nearest-neighbors in an ex-
pression space to a given gene are used to establish its as-
signed classification. The nearest neighbors are picked only
from the training set, and k is a fixed parameter, typically in
the range from 1 to 10 (for the final classification results pre-
sented here, k = 2 was found to be optimal).

The classifier used here has been called GENNC (gene ex-
pression nearest neighbor classifier). The implementation of
GENNC departs from a simple application of the kNN method
in that it also includes two important filtering steps that sup-
press noisy data, and which precede the kNN classification
proper.

Because it incorporates some measure of the truth before-
hand, in the form of the training set, GENNC has the desirable
feature that allows one to estimate its error rates. As a conse-
quence, optimization of the classifier parameters is possible,
and in particular, one can maximize sensitivity at a given,
fixed level of selectivity. This state of affairs removes much of
the arbitrariness that is often present when one is selecting
genes using unsupervised methods, although one should re-
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main aware that the results are critically dependent on the
quality and relevance of the training set.

Below, we first present the GENNC classifier applied to
finding genes in the osteogenic differentiation pathway of the
mouse C2C12 cell line, a pathway of direct relevance to dis-
ease processes such as osteoporosis. Starting from a data set of
34,130 expression profiles, and by use of an optimized set of
classifier parameters, GENNC classifies 176 genes into the
C2C12 bone pathway. Biological validation of this selection is
then provided by analyzing expression in an independent
biological assay consisting of a primary cell culture derived
from mouse calvaria (skull bone) tissue.

Related Work
Supervised learning schemes have been applied only rela-
tively recently to the analysis of gene expression. These in-
clude the work of Golub et al. (1999), the SPLASH algorithm
(Califano et al. 2000), and classification by so-called support
vector machines (Brown et al. 2000). The algorithms de-
scribed by Golub or in connection with SPLASH have been
used for a somewhat different task than the one considered
here, that of classifying and predicting cell types rather than
genes. Furthermore, whereas the support vector machines
have been used, as has been GENNC, for the classification of
genes, the problems considered are different; for instance, the
classification of Saccharomyces Cerevisiae genes into five broad
functional classes. Because of these differences, a direct com-
parison of the methods is not straightforward, and was not
attempted here, where, instead, we focused on a self-
contained presentation.

Biological System and Experiment Design
In vivo, undifferentiated mesenchymal stem cells (MSC) have
the ability to differentiate into chondrocytes, myocytes, adi-
pocytes, and osteoblasts (Taylor and Jones 1979; Grigoriadis
et al. 1988; Yamaguchi and Kahn 1991; for review, see Triffitt
1996; Karsenty 1999), and thus represent a valuable model for
the study of gene regulation associated with these mutually
exclusive differentiation pathways. In particular, several
members of the transforming growth factor-� (TGF-�) super-
family have been shown to play regulatory roles in osteoblast
differentiation and maturation. Thus, bone morphogenic pro-
tein 2 (BMP-2) was initially characterized by its ability to in-
duce new bone formation when implanted into muscular tis-
sues. In vitro, BMP-2 has been reported to stimulate osteoblas-
tic maturation and has the ability to induce or accelerate the
appearance of osteoblastic markers in both undifferentiated
nonosteogenic cells and committed osteoblast precursors
(Groeneveld and Burger 2000).

In the study presented here, we used the GENNC classifier
on a specific in vitro system, the well-characterized mouse
C2C12 cell line, which captures important aspects of the gen-
eral MSC differentiation program outlined above. The mouse
C2C12 cells are an established progenitor cell line that was
initially derived from parental C2 myoblasts isolated from
regenerating muscle of adult mouse (Yaffe and Saxel 1977;
Blau 1983). Exposure of these pluripotent cells to a low-
mitogen medium (2%–5% serum conditions) induces a pro-
gram of muscle differentiation coupled with terminal with-
drawal from the cell cycle and fusion of cells in multinucleate
myotubes (Halevy et al. 1995). On the other hand, treatment
of the C2C12 cells with recombinant BMP-2 blocks myotube
formation and induces osteogenic differentiation instead

(Katagiri 1994). Exposure of C2C12 cells to long-chain fatty
acids or thiazolidinediones also blocks myotube formation,
but now leads to the expression of a typical adipocytic differ-
entiation program (Teboul et al. 1995; Grimaldi et al. 1997).
Finally, treatment by TGF-�1 shares with the BMP-2 treat-
ment the ability to repress the myoblastic pathway, but fails
to induce osteoblastic differentiation (Katagiri 1994), and
thus maintains the C2C12 cells in a undifferentiated state.

The present experimental study focused on the osteo-
genic pathway of the C2C12 cell line, and thus explored only
a subset of the possible differentiation events described above.
C2C12 cells were grown for 4 d under three distinct medium
conditions (see Methods) as follows BMP-2 (1 µg/mL), TGF-�1
(2.5 ng/mL), and an all-solvent control (HCl 10 mM), these
assays promoting either joint osteoblastic induction and
myoblastic repression (under BMP-2), or pure myoblastic re-
pression (under TGF-�1). Total RNA samples were obtained at
six time points (4 h, 8 h, 1 d, 2 d, 3 d, and 4 d) under each
treatment, and the resulting cRNA samples were then hybrid-
ized to the Affymetrix 35K murine chip set. For each Af-
fymetrix qualifier (a “qualifier” refers to the set of features
which together measure the abundance of transcripts con-
taining a given RNA sequence), ratios for expression in each of
the treated samples relative to the solvent control were com-
puted. The assembly of the expression data (see Methods)
resulted, on a qualifier-by-qualifier basis, in 34,130 expression
profiles, each consisting of 12 points (6 points for the BMP-2
time course, 6 points for the TGF�1 time course) with the
treated-to-solvent-sample expression ratios given at each
point.

RESULTS

Construction of the Training Set
To analyze the C2C12 expression data using GENNC, a training
set containing genes from all three potential C2C12 differen-
tiation pathways (osteoblastic, myoblastic, and adipocytic), as
well as classes of genes defining negative controls, was con-
structed. The training set contained 481 qualifiers mapping
into 241 distinct genes, and subdivided into 5 classes labeled
Bone, Muscle, Adipocyte, Tubulin, and Hsp (Supplementary
Table 1, available as an online assignment at www.genome-
.org). Each of the Bone, Muscle, and Adipocyte classes was
meant to represent, at least partially, an entire pathway of
differentiation into the corresponding cell type, whereas the
Tubulin and Hsp embody negative controls.

The Bone class (Supplementary Table 1a, available as an
online assignment at www.genome.org) contains 83 qualifiers
mapping into 28 genes. The list contains genes for growth
factors (BMP-2, BMP-4), gene regulatory proteins and tran-
scription factors (Id, Id-2, Id-3, Osf2/Cbfa1, Hox-8), bone-
specific collagens (Type I �1 and �2 chains, Type III �1 chain,
and Type V �1 and �2 chains), cell-surface proteins (PTH/
PTHrP receptor, CD44), as well as for several extracellular ma-
trix (ECM) proteins constitutive of bone. Note that the selec-
tion strives to provide coverage of the commitment and dif-
ferentiation process from start to finish, and it is in this sense
that the Bone class can be said to represent the entire path-
way.

The Muscle class (Supplementary Table 1b, available as
an online assignment at www.genome.org ) contains 121
qualifiers mapping into 32 genes chosen on the basis of their
specificity to skeletal, cardiac, or smooth muscle. It includes
multiple components of the motor proteins (myosin, tropo-
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myosin, and troponins T, I, and C), associated structural pro-
teins (dystrophin, dystrobrevin, and DRP2), as well as tran-
scription factors of the myogenic family (MyoD, myogenin,
myf-5, herculin/myf-6, and MRF4) and proteins involved in
metabolism (CAIII and creatine kinase).

The Adipocyte class (Supplementary Table 1c, available
as an online assignment at www.genome.org) consists of 48
qualifiers mapping into 19 genes. These include receptors spe-
cific to adipocytes (RXR-�, PPAR-�, and leptin receptor), tran-
scription factors (C/EBP � and C/EBP �) as well as metabolic
proteins (PEPCK and LPL) and ECM proteins (collagen VI).

The selection criteria for the Tubulin and Hsp (heat
shock proteins) classes were looser and nonexhaustive, as the
aim was chiefly to provide negative controls for the nearest-
neighbor classification scheme. A total of 110 qualifiers (53
genes) were selected for the Tubulin class and 122 qualifiers
(84 genes) for the Hsp class, with the overall number adjusted
to be roughly equal to the number of qualifiers present in the
combined Bone, Muscle, and Adipocyte classes. Below, we
refer to the training set members as markers of their corre-
sponding classes. Qualifiers that are not in the training set are
referred to as blank qualifiers.

�2 Diagnostic and Filtering of the Data Set
A first step in the analysis was to reduce the large number of
profiles in the C2C12 time courses to a more manageable
number by retaining only those with the most significant
variation of expression in treated samples relative to the con-
trol samples. To do this, all profiles were ranked according to
a �2 statistic defined as the sum of squares of the difference in
expression between the treated and control samples, each
term in the sum being divided by an estimate of the variance
in the measurement at that point (Theilhaber et al. 2001; see
equation 1, Methods). The statistic not only gives importance
to profiles with a few, very large, and/or very small ratios, but
also to profiles with more moderate but more persistent ratios
not equal to 1. Although other filtering methods can be used,
such as requiring expression ratios above a certain threshold
at a certain number of points, an advantage of the �2 statistic
over such pass-fail criteria is that it provides a continuous
rather than binary ranking of all profiles.

�2 Diagnostic
The continuous ranking provided by the �2 statistic can be
used as a diagnostic for the global amount of regulation in
each of the classes defined in the training set. For instance,
Figure 1a shows the cumulative distribution of the 83 Bone
markers relative to the �2 ranking of all 34,130 qualifiers in
the data set. In the figure, the rank is indicated on the abcissa,
with significance decreasing left to right, and the ordinate
indicating the number of Bone markers that have rank lower
than or equal to the rank indicated on the abcissa. The steep
leftward rise of the cumulative distribution occurs because a
large number of the Bone markers have highly regulated ex-
pression profiles. Thus, the over-representation of the Bone
markers among the profiles with the greatest variation is such
that 50% of the Bone markers (42 qualifiers) are found in the
top 5.8% of the profiles in the ranked list (1995 qualifiers).
This over-representation (enrichment) of markers can be
quantified by a profile concentration C (Methods), which is
equal to 0.5 divided by the population cumulative distribu-
tion function, computed at the sample median. For the Bone
markers, CBone = 0.5/0.058 = 8.6.

The statistical significance of the distribution of Bone
markers can be further quantified by assigning a P value Pks

obtained by use of the Kolmogorov-Smirnov test (Keeping
1995) against the reference distribution that would be ob-
tained from a random sample of the population. For the data
presented in Figure 1a, one finds Pks

Bone = 2.9 � 10�15, a high
level of significance confirming the visual impression of pro-
nounced skewness (note that C and Pks are not redundant
quantities, as one can have C � 1 alongside Pks << 1).

The distribution of Muscle markers in the global �2 rank-
ing (Fig. 1b), with CMuscle = 1.1 only, is much less concentrated
near the top than for the Bone markers. Nonetheless, the dis-
tribution is still significantly different from random, as quan-
tified by Pks

Muscle = 5.1 � 10�3 and as visible in the figure.
Finally, the distribution of Adipocyte markers (figure not
shown) is essentially uniform, with CAdipo = 1 and Pks

Adipo = 0.78.
The profile concentrations and P values Pks for the Bone,

Muscle, and Adipocyte markers quantify the global responses
along each of the three pathways of the C2C12 cell line sub-
jected to the treatments with BMP-2 and TGF-�1, and, hence,
can be thought of as diagnostics for ascertaining whether or

not significant response is occurring along a given
pathway. Thus, the P values obtained above are con-
sistent with the phenotype of the C2C12 premyoblasts,
which can be induced into the osteoblastic pathway
upon BMP-2 treatment (Pks

Bone, Pks
Muscle << 1), but do not

spontaneously express the adipocytic phenotype
(Pks

Adipo ∼ 1).

�2 Filtering of the Data
With profiles ranked according to the �2 statistic, one
can proceed with data reduction through profile elimi-
nation, a step we will refer to as the �2 filter. Here, the
first N�

2 = 2500 qualifiers were selected from the
ranked list, a number determined heuristically to in-
sure that relative to the training set, about half of the
Bone markers were retained. Overall, 109 markers are
retained from the total of 484 initially present in the
training set, leaving 2391 blank qualifiers to be classi-
fied. Note that 22% of the training set markers are re-
tained by filtering the overall data set to 7.3% of its
original size, resulting in a threefold relative enrich-

Figure 1 Distribution of the 83 Bone and 121 Muscle markers (= training set
members) in the population of 34,130 profiles ranked according to the �2 sta-
tistic. A rank R of 1 denotes the most variable (significant) profile, a rank of
34,130 the least variable (least significant) profile. N is the cumulative number of
markers found with rank below or equal to the rank R indicated on the abcissa.
C denotes the profile concentration (see text and equation 3, in Methods) and Pks
is the companion P value (Kolmogorov-Smirnov test). The straight lines indicate
the distributions expected if markers were sampled at random in the global
population. (a) Bone markers; (b) Muscle markers.
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ment of the marker population. In filtering out the noisiest
profiles, we are nonetheless also losing 78% of the training
set; this is a necessary cost when dealing with microarray data,
in which typical signal-to-noise ratios are low (for Affymetrix
chips, the median signal-to-noise ratio is only about 3) (Thei-
lhaber et al. 2001). It should also be emphasized that the
initial choice of N�

2 is arbitrary, and is validated a posteriori
by whether an acceptable error rate obtains in the nearest-
neighbor classification. A method for the systematic optimi-
zation of N�

2 is discussed below, in which it is found that the
original heuristic choice of 2500 is, in fact, very close to op-
timal.

Principal Component Analysis
The data set reduced to N�

2 = 2500 qualifiers was then trans-
formed by generating for each fold change, a new value
R’ = Sym(R), in which the Sym function equally emphasizes
up- and down-regulation and is linear in R and 1/R as R → �

and R → 0, respectively (equation 4, Methods). Each profile
was then normalized according to a standard procedure
(Späth 1980), by subtracting from each value the mean and by
dividing by the standard deviation of all components in the
profile. Further restricting the data set to just the 109 training
set members present, a principal component analysis (PCA)
was performed (Ripley 1996). The profiles of the 44 Bone, 20
Muscle, and 5 Adipocyte markers present, projected onto the
space defined by the first three principal components, are
shown in Figure 2, in which they are labeled red, blue, and
yellow, respectively.

Figure 2 shows that, notwithstanding a few exceptions,
the markers of the different pathways are clearly segregated in

expression space. The exceptions are col VI, an Adipocyte
marker, which is positioned deep in the Bone cluster, and four
Muscle markers (3 qualifiers for �-actin, labeled g, and one for
creatine kinase, labeled C), which are positioned at the
boundary of the Bone cluster. Note, that as would be ex-
pected, in most cases all qualifiers mapping into the same
gene are very close to each other in expression space, reflect-
ing the fact that they are measuring the abundance of a
unique transcript. This is the case for the six osteopontin, the
four alkaline phosphatase (ALP), the three myosin light chain
(myosin L) qualifiers, and so on. On the other hand, the pres-
ence of a single qualifier for creatine kinase (c) deep in the
Bone cluster and remote from the five other tightly grouped
creatine kinase qualifiers, suggests an annotation error, or
that perhaps the chip features are registering a spurious signal
due to cross-hybridization. Conversely, the consistent posi-
tioning of the three �-actin qualifiers (g) at the border of the
Bone cluster indicates that their location is not an artefact and
their regulation is more Bone-like than Muscle-like (we did
not attempt to manually edit out these apparently misclassi-
fied instances from the training set).

The connection between the representation afforded by
Figure 2 and the actual expression profiles is made through
Figure 3a, b, and c, which show the profiles superposed for
each of the Bone, Muscle, and Adipocyte classes. Thus, the
overall signature of the Bone markers is seen to be one of
strong up-regulation during the time course with BMP-2 treat-
ment (Fig. 3a), that of the Muscle markers is strong down-
regulation during the same time course (Fig. 3b), and for the
Adipocyte markers (Fig. 3c), moderate down-regulation dur-
ing both BMP-2 and TGF-�1 time courses. These observations

are in agreement with the expected C2C12
phenotypic response to BMP-2 and TGF-�1
treatments.

If, in addition, the positions of the 19
Tubulin and 21 Hsp markers present are im-
ported into Figure 2 (Supplementary Fig. 1,
available as an on-line assignment at
www.genome.org), it is found that these
markers do not cluster with any of the classes
examined previously, but rather uniformly
fill the spaces between the clusters. This con-
firms their role as negative controls, delineat-
ing the regions of expression space bordering
on the Bone, Muscle, or Adipocyte clusters.

The kNN Classification Method
The classification of the 2391 blank qualifiers
in the reduced data set (N�

2 = 2500) was ac-
complished by GENNC. The classification
method embodied in GENNC is the so-called
kNN method (Duda and Hart 1973; Fukunaga
1990; Ripley 1996), which we have modified
by preliminary noise-filtering steps. As with
many other classifiers, the starting point is a
data representation in an m-dimensional
space of points (Duda and Hart 1973), in
which m is the number of values in each ex-
pression profile (m = 12 in the present case).
This representation is obtained by mapping
each profile into a single, m-dimensional
point, whose coordinates are given by the
values (intensities or expression ratios) defin-

Figure 2 Principal component representation for the training set. The profiles of the 44
Bone, 20 Muscle, and 5 Adipocyte training set qualifiers present in the C2C12 reduced data
set (N�

2 = 2500) are projected onto the space defined by their first three principal compo-
nents. (Bone) Red; (Muscle) blue; (Adipocyte) yellow. (ALP) Alkaline phosphatase; (col)
collagen; (THBS) thrombospondin; (myosin H and L) myosin heavy and light chains, re-
spectively; (g) gamma-actin; (c) creatine kinase. Numbers in parenthesis indicate multiplic-
ity of qualifiers mapping to the same gene.
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ing the original profile. Under this transformation, the dis-
tance between two profiles can then be defined precisely as
the geometrical (Euclidean) distance between the two corre-
sponding points in dimensions.

GENNC proceeds in three steps. The first step, the �2 fil-
tering of the data, was already described above, and is fully
specified by the parameter N�

2, the number of ranked profiles
to be passed by the filter. The second step, called correlation
filtering, eliminates from further consideration all qualifiers
that do not have significant correlation with any of the mem-
bers of the training set, the goal being to exclude qualifiers
that do not belong to any of the classes represented in the
training set (Ripley 1996), or for which the data is noisy and
inconsistent. The third step, called assignment, which is ap-
plied to all the qualifiers that passed the first two steps, uses
the kNN method proper for establishing classification.

The correlation filter is applied as follows. For each blank
qualifier, the Pearson correlation coefficients between its pro-
file, and the profiles of all of the markers in the training set are
calculated, and the maximum rmax is recorded. A P value is
then assigned to the qualifier by performing a randomization
test on rmax (see Methods). Finally, the filter is implemented
by excluding all qualifiers for which P > P0, in which the
threshold P0 is an adjustable parameter (the optimal choice of
P0 is discussed below). Note that all qualifiers excluded by
either the �2 or by the correlation filter are assigned the de-
fault classification None.

Each qualifier that passes the filtering steps is then sub-
mitted to the assignment step, which uses the so-called voting
form of the kNN method (Fukunaga 1990) to assign a classi-
fication. A fixed number k is chosen (typically in the range of
from 1 to 10). For each qualifier, its k-nearest-neighbors in the

Figure 3 Comparison of expression profiles for the Bone, Muscle, and Adipocyte training set qualifiers present in the C2C12 reduced data set
(N�

2 = 2500). (a) Superposition of profiles for the 44 Bone markers (15 distinct genes); (ALP) alkaline phosphatase; [col I (� 1)] type I collagen chain.
(b) superposition of profiles for the 20 Muscle markers (nine genes). (�) � Actin. (c) Superposition of profiles for the five Adipocyte markers (three
genes); (col VI) type VI collagen; (PEPCK) phosphoenolpyruvate carboxykinase; (LPL) lipoprotein lipase. All expression ratios have been transformed
according to the Sym(R) function (see text and equation 4, Methods).
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training set are then examined. The class that is most fre-
quently represented among these k-nearest-neighbors is then
assigned to the qualifier. In case of a tie between two or more
classes, the qualifier is assigned the default classification None
(in effect, it is not classified), a conservative assignment re-
ducing the number of false positives potentially occurring at
class boundaries in expression space.

It should be mentioned that whereas the temporal na-
ture of the data is not explicitly taken into account by the
kNN method (which depends only on a distance metric in
which time ordering is irrelevant), temporal dependency is
still implied, insofar as the training set members have char-
acteristic expression profiles over time and induce classifica-
tion of genes with similar expression profiles.

In Figure 4, a–d, we illustrate in a three-dimensional rep-
resentation the class assignments that obtain when the �2-
filtered data set (N�

2 = 2500, 109 markers present) is classified
with P0 = 0.01 and k = 2. Note that whereas Figure 4, a–d use
the same three-dimensional representation as in Figure 2, on
the basis of a PCA restricted to the 109 training set markers,
the actual classification is done in the full m = 12-dimensional
expression space. For the given value of P0, only 896 blank
qualifiers pass the correlation filter, the others being assigned
the classification None and removed from further consider-
ation. Figure 4a (identical to Fig. 2, but without labels) shows
the training set markers alone, composed of 44 Bone, 20
Muscle, and 5 Adipocyte markers, labeled red, blue, and yel-
low, respectively. Figure 4b shows the set of 201 new qualifi-

ers (176 genes) that get assigned the class Bone, Figure 4c
shows the 102 new qualifiers (85 genes) assigned the class
Muscle, and finally, Figure 4d shows the 8 new qualifiers (8
genes) assigned the class Adipocyte. In addition, and not

shown in the figures, are 109 new
qualifiers (89 genes) assigned the class
Tubulin (based on the 19 Tubulin
markers), and 137 new qualifiers (126
genes) assigned the class Hsp (based on
the 21 Hsp markers). Finally, for a total
of 33,092 blank qualifiers, classifica-
tion was not assigned (class None), ei-
ther because the qualifier did not pass
the filtering steps, or because a tied
vote occurred during the assignment
step. Note that the assignment of a
large number of qualifiers to the three
classes Tubulin, Hsp, and None results
in a conservative clustering of the re-
maining assignments, Bone, Muscle,
and Adipocyte, thereby reducing the
number of false positives. Table 1 lists
the breakdown of class assignments
(an alternative representation of the
classification process just described
above, using a “heat map,” is shown in
Supplementary Fig. 2, available as an
online assignment at www.genome.
org).

Optimization of
Classifier Parameters
The method for optimizing the classi-
fier parameters N�

2, P0, and k is based
on an analysis of the misclassification
error rates as a function of these pa-
rameters. To estimate error rates, we
combine two estimates, one account-
ing for misclassifications of qualifiers
belonging to the classes present in the

Table 1. Gene Classification Results

Class
Number of
qualifiers

Number
of genes S FPu

Bone 201 176 0.42 0.12
Muscle 102 85 0.09 0.31
Adipocyte 8 8 0.04 ∼1
Tubulin 109 89 0.04 0.39
Hsp 137 126 0.14 0.42
None 33,092
Total 33,649

Overall classification results for the C2C12 data set with classifier
parameters N�

2 = 2500, P0 = 0.01 and k = 2. For each class, the
number of assigned qualifiers and the corresponding number of
genes are indicated. S denotes the estimated sensitivity and FPu
the estimated false-positive rate for the detection of the members
of the indicated class. The initial data set contains 34,130 quali-
fiers, of which 481 are already in the training set. Of the remaining
33,649 unclassified qualifiers (total indicated at bottom of table),
557 (1.7%) are assigned by GENNC to one of the five classes
Bone, Muscle, Adiopocyte, Tubulin or Hsp, with classification de-
clined for the remaining 33,092 qualifiers (classification None).

Figure 4 The kNN classification process represented in PCA space, the input (colored) and
output (grey) classes for Bone, Muscle, and Adipocyte, using the same principal component co-
ordinates as in Fig. 2. GENNC with parameters N�

2 = 2500, P0 = 0.01, and k = 2 was applied to the
C2C12 data set. (a) Training set qualifiers only, with Bone labeled red (44), Muscle labeled blue
(20), and Adipocyte labeled yellow (5). (b) A total of 201 blank qualifiers are assigned to Bone. (c)
a total of 102 blank qualifiers are assigned to Muscle. (d) A total of eight blank qualifiers are
assigned to Adipocyte.
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training set, and the other accounting for misclassification of
qualifiers from other classes not explicitly represented in the
training set.

To estimate the error arising from the classes present in
the training set, we use the training set itself in an explicit
leave-one-out cross-validation (LCV) (Ripley 1996). By this
method, one removes a single instance at a time from the
training set, and then observes how it is classified by the re-
maining training set instances, thereby simulating the classi-
fication of independent test data with a training set of very
nearly the same size as the original one. For a given class, we
estimate the detection sensitivity S by the number, under
LCV, of correctly classified instances of that class divided by
the total number of instances in the class. We also estimate a
posterior false-positive rate FPcv for the detection of a given
class, with FPcv defined as the probability that an instance
already classified, say, as Bone, is not actually in the Bone
class; FPcv measures the contamination of a list of putative
class members by false positives and is a direct measure of the
quality of the (FPcv is equal to 1 minus the so-called “purity”
of the candidate list (Cowan, 1998, p. 49); it has also been
called the “false-discovery rate” (Tusher et al., 2001)). We es-
timate FPcv for a given class by the fraction of all instances
assigned under LCV to that class that actually belong to other
classes in the training set.

The false-positive rate FPcv, on the basis of LCV alone, is
an incomplete error estimate because it does not account for
misclassification into the classes represented in the training
set of qualifiers from (unknown) classes with no representa-
tives in the training set (Ripley 1996). For a given class, we
estimated the effect of these qualifiers by introducing an ad-
ditional contribution to the false-positive rate, proportional
to the Correlation Filter threshold P0 and to the total number
of blank qualifiers (see Methods). The combination of this
term with FPcv yields an upper bound, denoted by FPu, to the
total false-positive rate.

We first conducted a systematic investigation of the de-
pendence of S and FPu for Bone on the number of nearest-
neighbors, for k in the range of 1 to 10, and for fixed
N�

2 = 2500 and P0 = 0.01 (an initial, heuristic choice). Al-
though the sensitivity was approximately constant for all val-
ues of k (S ≈ 0.4), the false-positive rate was lowest for k = 2
(FPu = 0.12), and we fixed k = 2 in what follows (so that class
assignments occur only when both nearest neighbors belong
to the same class). The choice of N�

2 could then be optimized
to insure maximum sensitivity at the given level of selectivity.
We thus investigated the variation of the sensitivity for a con-
stant false-positive rate FPu = 0.12, maintained by continu-
ously adjusting P0, whereas N�

2 was allowed to vary. The de-
pendence of the sensitivity on N�

2 for the detection of Bone
markers is shown in Figure 5 for the range 500 � N�

2 � 10,000.
The distinguishing feature of Figure 5 is that it has a maxi-
mum of S* = 0.44 at N*�2 = 2,000, which represents an optimal
balance between the stringency of the two filtering steps and
the accuracy of the nearest-neighbor classifier. The existence
of the maximum in Figure 5 is a central result; it shows that it
is possible to optimize the classifier parameters according to a
quantitative criterion, and to estimate the classification error
rates at that optimum.

Biological Cross-Validation of Assigned Genes
We focus on the selection of genes (Table 1) brought on by the
classifier parameters N�

2 = 2500, P0 = 0.01, and k = 2 with re-

sulting sensitivity for detection of Bone markers S = 0.42
(� 0.05) and false-positive rate FPu = 0.12. This choice was
initially made on heuristic grounds, but it is very close close to
the optimal value N*�2 ≈ 2,000. (S* = 0.44) determined by Fig-
ure 5. Table 1 also lists estimated sensitivities for the four
other classes represented in the training set. The sensitivity
and false-positive rate for detection of myoblastic genes are
0.09 and 0.31, respectively, for detection of Hsp genes 0.14
and 0.42, respectively, and the sensitivities for the detection
of Adipocyte and Tubulin genes are very low, S = 0.04. These
results are in accordance with the experiment design, which
predominantly stimulated the osteogenic pathway. The fact
that the optimal sensitivity for detecting osteogenic genes is
still considerably less than 1 (less than one chance in two of
detecting a known Bone marker), is a reflection of the cost of
detecting genes against a noisy background while maintain-
ing an acceptably low false-positive rate.

Although the error model and internal cross-validation
procedures described above are guides for parameter optimi-
zation of the classifier, they are no substitute for biological
cross-validation of the results. To that end, we examined ex-
pression data from a biological assay completely independent
of the C2C12 cell line. Primary calvaria (skull bone) cells de-
rived from 2-day-old mouse pups were extracted and cultured
in differentiation medium for 21 d. RNA samples were pre-
pared from cells harvested at day 0, 2, 7, 14, and 21 (T. Garcia,
S. Roman-Roman, A. Jackson, J. Theilhaber, T. Connolly, S.
Spinella-Jaegle, S. Kawai, B. Courtois, S. Bushnell, M. Auber-
val, et al., in prep.). This widely studied experimental model
(Rodan and Noda 1991) realizes, in a biologically more real-
istic setting, the osteoblast differentiation processes induced
in the C2C12 myoblastic cell line by BMP-2. Thus, many of
the genes classified on the basis of the C2C12 experiments as
belonging to the Bone or Muscle pathways, should also be

Figure 5 Dependence, for the detection of Bone qualifiers, of the
sensitivity S on the �2 filtering step parameter N�

2 (number of quali-
fiers passed after �2 ranking). For a given N�

2, the reduced C2C12
data set is classified by GENNC with fixed k = 2, and with the Corre-
lation Filter threshold P0 adjusted to maintain a false-positive rate
FPu = 0.12. The maximum sensitivity occurs for N*�2 = 2,000, S* = 0.44
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strongly regulated during the temporal progression of the
calvaria primary cells.

As with the C2C12 samples, all calvaria samples were
hybridized in duplicate to the complete Affymetrix 35K
mouse chip set, and a single, composite data set containing
all of the expression data was assembled, resulting in 34,130
expression profiles of 5 time-points each. All expression val-
ues were expressed as ratios, relative to the first time point.
The 34,130 expression profiles were then ranked according
to the �2 statistic, thereby giving highest rank to profiles with
the greatest variation across the five time points. It should be
emphasized that the �2 statistic does not distinguish between
up- or down-regulation, nor between early or late induction
or repression, but is rather a global measure of variation dur-
ing the time course.

Validation of Bone Class Members
The distribution relative to the global �2 ranking of the cal-
varia profiles, of the 44 Bone markers in the training set that
were present after �2 filtering of the C2C12 data (N�

2 = 2500),
is shown in Figure 6a. The over-representation of these mark-
ers in the set of strongly regulated profiles is evident in the
figure and statistically highly significant (C = 20, Prs = 6.4 �

10�22), however, these results were to be expected on the
basis of the original choice of the markers as osteogenic, and
can be said to only confirm the soundness of the choice. On
the other hand, the distribution in the calvaria data of the
201 qualifiers classified as Bone by GENNC, (Fig. 6b) is also
strongly nonuniform and statistically significant (C = 5.0,
Pks = 10�49) and was not expected a priori. In other words, a
large fraction of the genes selected as relevant to osteogenesis
solely on the basis of the nearest-neighbor classification, are
found to be strongly regulated in the independent calvaria
experiments. A more specific comparison of expression pro-
files is shown in Figure 7 for Cystatin C, an inhibitor of
cysteine protease shown recently be expressed by osteoblasts
and to inhibit bone resorption in vitro (Lerner et al. 1997;
Candeliere et al. 1999) and periostin (also known as Osf-2) a
90-kD protein that is selectively expressed in osteoblasts and

functions as a homophilic adhesion molecules in bone for-
mation (Takeshita et al. 1993). It is of interest to note that
whereas periostin was selected by GENNC on the basis of a very
strongly regulated profile in the C2C12 time courses, cystatin
C was selected on the basis of a much more muted expression
profile (Fig.7, cf. a and b); nonetheless, both genes display
strong induction during the calvaria time course.

For the 176 genes assigned to Bone by the nearest-
neighbor classifier, a functional assignment based on anno-
tation could be readily found for 78 (Supplementary Table 2,
available as an online assignment at www.genome.org), the
remaining 98 genes corresponding to currently unannotated
Affymetrix qualifier sequence. The potential relevance of the
78 annotated genes in the differentiation and maturation pro-
cess and in the function of osteoblasts is highlighted by the
fact that 19 of the 78 genes have been shown to play revelant
roles in bone biology. Eight genes encode for matrix proteins,
including �2 collagen type VI, osteonectin, CACP/mega-
karyocyte stimulating factor precursor, the small leucine-rich
proteoglycans (SLRPs), biglycan, and fibromodulin, and the
cell-surface heparan sulfate proteoglycans syndecan-1, N-
syndecan, and glypican. Fibromodulin and biglycan are
known to be expressed at sites of cartilage and bone formation
and interstitial tissue deposition (Wilda et al. 2000) and im-
portantly, targeted disruption of the biglycan gene has been
reported to lead to an osteoporosis-like phenotype in mice
(Xu et al. 1998). CACP is mutated in camptodactyly-
arthropathy-coxa vara-pericarditis syndrome (Marcelino et al.
1999). Controlled expression of syndecans by cells of the os-
teoblast lineage has been suggested recently to play an impor-
tant role in the regulation of osteoblastic proliferation and
differentiation (Birch and Skerry 1999). Two genes encode for
proteins involved in adhesion and cell-cell contact, periostin
(already mentioned above) and connexin 43. Periostin, pre-
viously called osteoblast-specific-factor-2 (Osf-2), plays a role
in the recruitment and attachment of osteoblast precursors in
the periosteum (Horiuchi et al. 1999), and enhancement of
connexin 43 expression has been shown to increase both pro-
liferation and differentiation of osteoblasts (Gramsch et al.

2001). Three genes encode for transcription factor-
related proteins, the homeobox transcription factor
Prx2, the AP-1 family member fra-1, and Smad6. The
role of Smad6 in osteoblast and chondroblast differen-
tiation has been investigated recently by Fuji et al.
(1999). Interestingly, Prx-1 has been shown to function
in cooperation with Prx-2 to maintain cell fates within
the craniofacial mesenchyme (Lu et al. 1999), and mice
overexpressing fra-1 display an increased bone forma-
tion and osteosclerosis (Jochum et al. 2000). Four genes
encode secreted proteins including TGF-�1, FISP-12/
CTGF, BMP-1, and cystatin C (already mentioned
above). The role of TGF-�1 in bone biology has been
described largely (for review, see Centrella et al. 1994).
FISP-12 is capable of stimulating the proliferation and
differentiation of osteoblasts in addition to chondro-
cytes and endothelial cells (Nishida et al. 2000). The
metalloproteinase BMP-1 has been suggested recently
to influence matrix maturation during skeletogenesis
(Reynolds 2000). Concerning the cysteine proteinase
inhibitor cystatin C, it has been reported that this pro-
tein is produced by osteoblasts and inhibits bone re-
sorption (Lerner et al. 1997; Candeliere et al. 1999).
Our method also classified the prostaglandin E recep-
tor and gluthatione peroxidase genes. Prostaglandin E2

Figure 6 Distribution in the �2 statistic of the Bone markers and of qualifiers
assigned to Bone by GENNC using the C2C12 data set, relative to the expression
data from the calvaria primary cell cultures. In each figure, a rank R of 1 denotes
the most variable (significant) profile, a rank of 34,130 the least variable (least
significant) profile. N indicates the cumulative number of markers found with
rank below or equal to the rank R indicated on the abcissa. C denotes the profile
concentration of the qualifiers (see text and equation 3 in Methods) and Pks the
companion P value. The straight lines indicate the distributions expected if mark-
ers are positioned at random in the global population. (a) Distribution of the 44
Bone markers (from the training set); (b) distribution of the 201 qualifiers as-
signed to Bone by nearest-neighbor classification (N�

2 = 2500, k = 2, and
P0 = 0.01).
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has been reported to have multiple actions in the osteoblast,
such as growth promotion and cell differentiation, and dif-
ferent Prostaglandin E receptor subtypes have been reported
to be expressed in osteoblastic cells (Suda 1996). Finally, it has
been suggested that the expression of selenoproteins, like glu-
tathione peroxidases, in osteoblasts may represent a new sys-
tem of osteoblast antioxidative defense that may be relevant
for the protection against hydrogen peroxide produced by
osteoclasts during bone remodeling (Dreher 1998). The rel-
evance to bone biology of the other 59 annotated genes need
to be studied further, but their expression association with
bone-relevant genes suggests that they might play a role in
the osteoblast function. Note, however, the existence of at
least two obvious false positives (myosin heavy chain and
myosin regulatory light chain), consistent with the finite
false-positive rate of the classification, FPu = 0.12.

DISCUSSION
In connection with an experimental study of osteogenesis, we
presented a new method for analyzing large-scale gene expres-
sion data, and for extracting sets of genes relevant to given
classes of biological processes. This method, embodied in the
computer program GENNC, is based on a supervised learning
approach, the kNN method, coupled to a set of noise-
reduction algorithms. A central feature of the method is that
it provides error estimates (sensitivity and false-positive rates),
which allow for optimization of the classifier and which re-
move much of the arbitrariness of selection that is often
present when one uses unsupervised methods.

GENNC was used to find genes in the osteogenic pathway
of the C2C12 cells, and, in addition to 28 genes in the train-
ing set, classified a group of 176 genes (selected from an ini-
titial data set containing 34,130 expression profiles) as be-
longing to the bone pathway. The estimated sensitivity was
∼42% (�5%), at a false-positive rate (fraction of spurious as-
signments) of 12% (�2%). As a means of biological cross-
validation, the expression of these genes was then analyzed in

an independent, primary cell culture derived from mouse cal-
varia. Both a global, statistical analysis of the expression pro-
files of the genes in the calvaria, as well as a case-by-case,
expert analysis of some of the candidates judged most inter-
esting on the basis of annotation, supported the overall va-
lidity of the assignment (although ultimate validation of os-
teogenic relevance must necessarily come from more experi-
mentation).

It should be noted that the experimental design focused
on the effects of treatment and time, but did not explore the
intrinsic biological variation between cell cultures; such a
study would have been possible only if we had replicated all
cell cultures at least once, which we did not. Although this
situation may lead to spurious results, for instance, if one of
the cell cultures displayed atypical behavior during its time
course, we believe that we have two controlling factors; first,
the existence of an externally determined set of relevant genes
(the training set) gives global indications of success or failure
in stimulating a given pathway; second, we have validated the
selection of genes on the basis of the C2C12 data by examin-
ing their regulation in an independent biological assay (the
calvaria primary cell culture). Of course, pending more avail-
able resources, biological replicates would have been a wel-
come addition to the experimental design.

Some additional comments can be made regarding the
significance of the class assignments. First, the error estimates
are only as good as the training set that is provided as input to
the model; if, as is likely, the training set contains an over-
representation of high expressor genes, estimates of sensitiv-
ity will tend to be overly optimistic. Second, the assignment
of genes to a given class is based on coregulation with the
markers of that class, but does not carry information about
causal relationships within the class. Thus, assignment to a
functional class is not a guarantee that a gene plays a central
role in that class; the nature of that role can only be answered
by additional domain knowledge or by additional, focused
experiments.

Because the concept of the training set is very flexible,

Figure 7 Expression profiles for periostin (Osf-2) and cystatin C. (a) Ratios of expression in the treated to expression in the control samples for
the two C2C12 time courses under treatment with BMP-2 and TGFB; (b) ratios of expression relative to the first time point for the time course
generated by the calvaria primary cell culture.
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the approach embodied by GENNC provides a way to identify
gene targets associated with any set of physiologic or patho-
physiologic events in which some expert knowledge is avail-
able beforehand to define an appropriate training set. Ex-
amples of training sets other than the one considered here
might be entire metabolic pathways, or again, sets of onco-
genes and tumor suppressors, perhaps divided into broad classes
according to known association in different types of tumors.

Work in progress on the GENNC classifier includes tech-
nical improvements such as developing methods for editing
the training set (Ripley 1996). However, it should be empha-
sized that the biological quality of the training set is essential
for the relevance of the final results, and thus, is at least as
important as any algorithmic detail of the method.

METHODS

Cell Cultures and Chip Hybridizations
Total RNA samples were obtained from three C2C12 cell cul-
tures (BMP-2 treated, 1 µg/mL, TGF-�-treated, 2.5 ng/ml, and
solvent-treated control, HCl 10 mM) by use of the RNAplus kit
provided by Quantum, harvesting from each culture at six
time points (4 h, 8 h, 1 d, 2 d, 3 d, and 4 d). For every resulting
sample, labeled cRNA probes were then generated by reverse
transcription followed by in vitro transcription (IVT) incor-
porating biotin labeling as part of the standard Affymetrix
protocol. For each sample, the probes were then hybridized to
the complete series of Affymetrix 35K mouse chips
(Mu19KsubA, Mu19KsubB, Mu19KsubC, Mu11KsubA, and
Mu11KsubB), with two identical chips (replicates) used for
every type. Because of constraints on the timing of chip sup-
ply, replicate hybridizations did not always correspond to
probe prepared from a unique IVT. After hybridization and
staining, the chips were scanned by laser. The final data set
consisted of a total of 180 scan files, each obtained by use of
the Affymetrix GeneChip software, which, for each qualifier
in the file, assigns an intensity that is a measure of the corre-
sponding transcript abundance. The output files were further
post-processed into a format, which, for each intensity, adds
an estimate of the standard deviation of the noise (Theilhaber
et al. 2001).

Data Assembly
A total of 120 scan files obtained from the BMP-2 and TGF-
�1-treated samples (and post-processed as mentioned above),
arranged in order of the BMP-2 time course (6 time points,
each in replicate, across 5 chips) and the TGF-�1 time course
(6 time points, each in replicate, across 5 chips) were concat-
enated together into a single file with replicates forming ad-
jacent columns, and with the qualifiers of all 5 chips forming
the rows. A similar concatenation was performed on the files
obtained from the solvent-treated cell cultures. Replicate data
were then combined by computing the average of the repli-
cate intensities. The estimate of the standard deviation of the
noise was also propagated. The final step in the data assembly
consisted of obtaining for each qualifier the expression ratios
of treated to solvent samples for all points in the time courses,
which were obtained using both intensity and noise data
through a Bayesian estimation algorithm (Theilhaber et al.
2001).

Mathematical Details

�2 Statistic and Expression Ratios
For a given qualifier, consider a double profile consisting of
treated and control expression levels (intensities) for different
sampling points, i = 1,2,. . .,m. The �2 statistic d2 quantifying
the overall change in the profile is defined as

d2 = �
i=1

m
�yi − xi�

2

�xi
2 + �yi

2 , (1)

in which yi, i = 1,2,. . .,m are the intensities for the treated
samples, xi, i = 1,2,. . .,m the intensities for the control
samples, and in which �2

yi and �2
xi are estimates of the variance

of the noise present in the measurements of yi and xi, respec-
tively. The variances �2

yi and �2
xi include both the effects of

chip-to-chip variation and cross-hybridization, and are part of
an underlying noise mode (Theilhaber et al. 2001). The ratios
Ri � yi/xi are separately estimated by use of a Bayesian estima-
tion scheme (Theilhaber et al. 2001). All intensities are given
by the average difference measure of abundance, which is
computed by the Affymetrix GeneChip (Lockhart et al. 1996)
software algorithm. The average difference is a trimmed mean
of the 20 paired differences of intensities, between the 20
perfect match and the 20 mismatch features representing a
given qualifier on the chip.

The noise model underlying the variances used in equa-
tion 1 has been presented in Theilhaber et al. (2001). Briefly,
for a given intensity measurement , the estimated variance �2

x
noise is written as the sum of two terms,

�x
2 = ��x�2 + �bc

2 , (2)

in which � = 0.25 is a coefficient of variation, derived from a
set of Affymetrix-specific development experiments, and in
which �2

bc. is an intensity-independent variance unique to a
given scan, and which simultaneously accounts for back-
ground and cross-hybridization effects.

In the specific application to the C2C12 data, m = 12 is
the total number of points in each expression profile. The
six values of yi for i = 1,2,. . .6, are given by the six inten-
sities (estimates of abundance) obtained from the BMP-2-
treated cell culture, at the sampling times 4 h, 8 h, , 4 d. The
corresponding six values of xi, i = 1,2,. . .,6, are the six inten-
sities obtained from the solvent control cell culture, at the
corresponding time points. The six values of yi for
i = 6,7,. . .,12, are given by the six intensities obtained from
the TGF-�l-treated cell culture, again at the sampling times 4
h, 8 h, , 4 d, and the corresponding values of xi, for
i = 6,7,. . .,12 are the same, in order, as the ones used for
i = 1,2,. . .,6.

If, in equation 1, all intensity observations yi and xi were
independent, and the noise model and its estimates of vari-
ance �2

yi and �2
xi were exact, then the sampling distribution of

d2 under the assumption of no significant difference between
the profiles in xi and yi would be �2 with m degrees of freedom.
In the present situation, these assumptions are not valid, be-
cause there is time dependence between successive observa-
tions, and the variances �2

yi and �2
xi are meant to be approxi-

mations only (Theilhaber et al. 2001), so that d2 cannot be
used directly in a significance test on the basis of a �2 distri-
bution. Nonetheless, d2 is very useful as a ranking statistic,
and it is used to filter profiles as a pre-processing step for the
nearest-neighbor classifier, as described in the main text. The
rank threshold for accepting profiles is then determined, not
from an absolute significance test, but so as to optimize sen-
sitivity of detection of a given class.

Concentration Measure
The over-representation among most highly regulated pro-
files of the members of a test data set in a globally ranked
data set can be quantified by a concentration measure Cp,
defined by

Cp =
p

pglobal
, (3)

in which p is a fixed percentile in the test data set (starting
from the top of the ranked list), and in which pglobal is the
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percentile in the global data set of the element with percentile
p in the test data set. The choice of p depends on whether one
wishes to emphasize the top of the test data distribution (p →
0) or the entire test data distribution (p → 1). In this study, we
set p = 0.5, and define C ≡ C0.5.

The Sym Transformation
By the Sym transformation, up or down fold-changes are sym-
metrically transformed into values R’ by the formula

R� = Sym�R� ≡ ��R2 − 1�1�2, R 	 1,
− �1�R2 − 1�1�2, R 
 1.

(4)

Although a logarithmic transformation can also be used to
perform a symmetric transformation, the Sym transformation
has the advantage of not squashing the dynamic range for
large or small fold changes.

Randomization Test For Correlation Coefficients
In the Correlation Filter, for each qualifier that is to be clas-
sified, the Pearson correlation coefficients between its profile
(called the query profile) and all of the markers in the training
set are calculated, and the maximum rmax of all of these values
is then recorded. To assign a statistical significance to this
value, a randomization test is then performed (Sprent 1998);
this is done by randomly permuting the values in the query
profile Nper times, each time recomputing the Pearson corre-
lation coefficients with all of the training set markers, and
recording the resulting maximum, r*max. The histogram of r*max
is then the basis for defining a P value , which is defined as the
fraction of times, out of the Nper randomized samplings, for
which r*max > rmax. The parameter Nper specifying the number
of random permutations is adjustable, but is determined
chiefly by the necessity to adequately sample a large subset of
all possible permutations, and should also satisfy Nper >> 1/
Pmin, in which Pmin is the smallest P value one wishes to re-
solve. In this study, we have used Nper = 10,000.

Estimate of Error Rates By Cross-validation
To estimate the effect of the background qualifiers (unknown
qualifiers not belonging to any of the classes represented in
the training set) on the false-positive rate for classification
into a specific class (say for Bone), we make two approxima-
tions. We first note that when the Correlation Filter is applied
to a total of N0 instances ( the number of blank qualifiers after
�2 Filtering), at a given P value threshold P0, we expect about
P0 · N0 spurious instances to be accepted. As a second approxi-
mation, we assume a worst-case scenario under the Assign-
ment step, in which all of the spurious instances are classified
into Bone.

Let the actual number of blank qualifiers classified into
Bone by GENNC be NB. We can estimate an upper bound NFPU
for the total number NFP of false positives,

NFP � NFPU, (5)

by adding the expected number of misclassifications from the
known classes to those from the background qualifiers, which
reside in classes unknown to the training set,

NFPU = FPcv � NB + P0 � N0, (6)

in which FPcv is obtained by the LCV procedure (Ripley 1996).
Note that according to equation 6, NFPU will necessarily be
larger than NB as P0 → 1 (because N0 	 NB, since the NB Bone-
classified qualifiers are chosen from the N0 blank qualifiers),
reflecting the crude nature of the estimate. When this occurs,
we simply set NFPU = NB. In turn, by dividing equation 6 by
NB, an upper bound FPu on the total false-positive rate FP for
selecting bone markers can be derived,

FP � FPu ≡ min �FPcv + P0�N0�NB�,
1 . (7)

In equation 7 both FPcv and NB are numerically determined,
and given in the GENNC output, N0 is the number of blank
qualifiers after �2 filtering, and P0 is the significance threshold
for the Correlation Filter, specified as input by the user.

ACKNOWLEDGMENTS
The authors thank Dr. Anatoly Ulyanov and Dr. Michael
Rosenberg for providing essential annotation information, as
well as for their scientific comments regarding this work.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Alizadeh, A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald,

A., Boldrick, J.C., Sabet, H., Tarn, T., Yu, X., et al. 2000. Distinct
types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature 403: 503–512.

Alon, U., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and
Levine, A.J. 1999. Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc. Natl. Acad. Sci. 96: 6745–6750.

Ben-Dor, A., Shamir, R., and Yakhini, Z. 1999. Clustering expression
patterns. J. Computat. Biol. 6: 281–297.

Birch, M.A. and Skerry, T.M. Differential regulation of syndecan
expression by osteosarcoma cell lines in response to cytokines
but not osteotropic hormones. Bone 24: 571–578.

Blau, H.M., Chiu, C.P., and Webster, C. 1983. Cytoplasmic
activation of human nuclear genes in stable heterocaryons. Cell
32: 1171–1180.

Brown, M.P.S., Grundy, W.N., Lin, D., Cristiani, N., Sugnet, C.W.,
Furey, T.S., Ares, Jr., M., and Haussler, D. 2000. Knowledge-based
analysis of microarray gene expression data by using support
vector machines. Proc. Natl. Acad. Sci. 97: 262–267.

Califano, A., Stolovitzky, G., and Tu, Y. 2000. Analysis of gene
expression microarrays for phenotype classification. In
Proceedings of the eighth international conference on intelligent
systems for molecular biology. (ed. Altman, R. ), pp. 75–85. AAAI
Press, Menlo Park, California.

Candeliere, G.A., Rao, Y., Floh, A., Sandler, S.D., and Aubin, J.E.
1999. cDNA fingerprinting of osteoprogenitor cells to isolate
differentiation stage-specific genes. Nucleic Acids Res.
27: 1079–1083.

Centrella, M., Horowitz, M.C., Wozney, J.M., and McCarthy, T.L.
1994. Transforming growth factor-� gene family members and
bone. Endocr. Rev. 15: 27–39.

Cowan, G. 1998. Statistical Tests. In Statistical Data Analysis, pp.
48–50. Clarendon Press, Oxford, U.K.

Dreher, I., Schutze, N., Baur, A., Hesse, K., Schneider, D., Kohrle, J.,
and Jakob, F. 1998. Selenoproteins are expressed in fetal human
osteoblast-like cells. Biochem. Biophys. Res. Commun.
245: 101–107.

Duda, R.O. and Hart, P.E. 1973. Nonparametric Techniques. In Pattern
Classification and Scene Analysis, pp. 98–105. John-Wiley, New
York.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. 1998.
Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. 95: 14863–14868.

Fuji, M., Takeda, K., Imamura, T., Aoki, H., Sampath, T.K., Enomoto,
S., Kawabata, M., Kato, M., Ichijo, H., and Miyazono, K. 1999.
Roles of bone morphogenetic protein type I receptors and Smad
proteins in osteoblast and chondroblast differentiation. Mol. Biol.
Cell 10: 3801–3813.

Fukunaga, K. 1990. Nonparametric Classification and Error
Estimation. In Introduction to statistical pattern recognition, pp.
303–322. 2nd ed., Academic Press, New York.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J.P., Coller, H., Loh, M. L., Downing, J.R., Caligiuri,
M.A., et al. 1999. Molecular classification of cancer: Class
discovery and class prediction by gene expression monitoring.
Science 286: 531–538.

Gramsch, B., Gabriel, H.D., Wiemann, M., Grummer, R.,

Finding Genes in the C2C12 Osteogenic Pathway

Genome Research 175
www.genome.org



Winterhager, E., Bingmann, D., and Schirrmacher, K. 2001.
Enhancement of vonnexin 43 rxpression increases proliferation
and differentiation of an osteoblast-like vell line. J. Bone Miner.
Res. Exp. Cell. Res.264: 397–407.

Grigoriadis, A.E, Heersche, J.N., and Aubin, J. 1988. Differentiation
of muscle, fat, cartilage and bone from progenitor cells present
in a bone-derived clonal cell population; effect of
dexamethasone. J. Cell. Biol. 106: 2139–2151.

Grimaldi, P.A., Teboul, L., Inadera, H., Gaillard, D., and Amri, E.Z.
1997. Trans-differentiation of myoblasts to adipoblasts:
Triggering effects of fatty acids and thiazolidinediones.
Prostaglandins Leukot. Essent. Fatty Acids. 1: 71–75.

Groeneveld, E.H. and Burger, E.H. 2000. Bone morphogenetic
proteins in human bone regeneration. Eur. J. Endocrinol.
142: 9–21.

Halevy, O., Novitch, B.G., Spicer, D.B., Skapek, S.X., Rhee, J.,
Hannon, G.J., Beach, D., and Lassar, A.B. 1995. Correlation of
terminal cell cycle arrest of skeletal muscle with induction of p21
by MyoD. Science 267: 1018–1021.

Horiuchi, K., Amizuka, N., Takeshita, S., Takamatsu, H., Katsuura,
M., Ozawa, H., Toyama, Y., Bonewald, L.F., and Kudo, A. 1999.
Identification and characterization of a novel protein, periostin,
with restricted expression to periosteum and periodontal
ligament and increased expression by transforming growth factor
�. J. Bone Miner. Res. 14: 1239–1249.

Jochum, W., David, J.P., Elliott, C., Wutz, A., Plenk, Jr, H., Matsuo,
K., and Wagner, E.F. 2000. Increased bone formation and
osteosclerosis in mice overexpressing the transcription factor
Fra-1. Nat. Med. 6: 980–984.

Karsenty, G. 1999. The genetic transformation of bone biology.
Genes & Dev. 13: 3037–3051.

Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N.,
Ikeda, T., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., and Suda,
T. 1994. Bone morphogenetic protein-2 converts the
differentiation pathway of C2C12 myoblasts into the osteoblast
lineage. J. Cell Biol. 127: 1755.

Keeping, E.S. 1995. Non-parametirc Statistical Tests. In Intoduction to
statistical inference, pp. 256–260. Dover, New York.

Lerner, U.H., Johansson, L., Ranjso, M., Rosenquist, J.B., Reinholt,
F.P., and Grubb, A. 1997. Cystatin C, an inhibitor of bone
resorption produced by osteoblasts. Acta. Physiol. Scand.
161: 81–92.

Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V.,
Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H.,
et al. 1996. Expression monitoring by hybridization to
high-density oligonucleotide arrays. Nat. Biotechnol.
14: 1675–1680.

Lu, M.F., Cheng, H.T., Kern, M.J., Potter, S.S., Tran, B., Diekwisch,
T.G., and Martin, J.F. 1999. Prx-1 functions cooperatively with
another paired-related homeobox gene, prx-2, to maintain cell
fates within the craniofacial mesenchyme. Development
126: 495–504.

Marcelino, J., Carpten, J.D., Suwairi, W.M., Gutierrez, O.M.,
Schwartz, S., Robbins, C., Sood, R., Makalowska, I., Baxevanis, A.,
Johnstone, B., et al. 1999. CACP, encoding a secreted
proteoglycan, is mutated in camptodactyly-arthropathy-coxa
vara-pericarditis syndrome. Nat. Genet. 23: 319–322

Nishida, T., Nakanishi, T., Asano, M., Shimo, T., and Takigawa, M.
2000. Effects of CTGF/Hcs24, a hypertrophic
chondrocyte-specific gene product, on the proliferation and
differentiation of osteoblastic cells in vitro. J. Cell Physiol.
184: 197–206.

Reynolds, S.D., Zhang, D., Puzas, J.E., O’Keefe, R.J., Rosier, R.N., and
Reynolds, P.R. 2000. Cloning of the chick BMP1/Tolloid cDNA
and expression in skeletal tissues. Gene 248: 233–243.

Ripley, B.D. 1996. Pattern recognition and neural networks. University
Press, Cambridge, UK.

Rodan, G.A. and Noda, M. 1991. Gene expression in osteoblastic
cells. Crit. Rev. Euk. Gene Expr. 1: 85–98.

Ross, D.T. 2000. Systematic variation in gene expression patterns in
human cancer cell lines. Nat. Genet. 24: 227–244.

Späth, H. 1980. Cluster analysis algorithms, p. 20., John Wiley, New
York.

Sprent, P. 1998. Correlation and Concordance. In Data driven
statistical methods, pp. 225–231. Chapman and Hall, London, UK.

Suda, M., Tanaka, K., Natsui, K., Usui, T., Tanaka, I., Fukushima, M.,
Shigeno, C., Konishi, J., Narumiya, S., Ichikawa, A., et al. 1996.
Prostaglandin E receptor subtypes in mouse osteoblastic cell line.
Endocrinology 137: 1698–1705.

Takeshita, S., Kikuno, R., Tezuka, K., and Amann, E. 1993.
Osteoblast-specific factor 2: Cloning of a putative bone adhesion
protein with homology with the insect protein fasciclin I.
Biochem. J. 294: 271–278.

Tamayo, P., Slonim, D., Mesirov, J., Zgu, Q., Kitareewan, S.,
Dmitrovsky, E., Lander, E.S., and Golub, T.R. 1999. Interpreting
patterns of gene expression with self-organizing maps: Methods
and applications to homeopoietic differentiation. Proc. Natl.
Acad. Sci. 96: 2907–2912.

Taylor, S.M. and Jones, P.A. 1979. Multiple new phenotypes induced
in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell
17: 771–779.

Teboul, L., Gaillard, D., Staccini, L., Inadera, H., Amri, E.Z., and
Grimaldi, P.A. 1995. Thiazolidinediones and fatty acids convert
myogenic cells into adipose-like cells. J. Biol. Chem.
270: 28183–28187.

Theilhaber, J., Bushnell, S., Jackson, A., and Fuchs, R. 2001. Bayesian
estimation of fold-changes in the analysis of gene expression: the
PFOLD algorithm. J. Comp. Biol. 8: 585–614.

Triffitt, J.T. 1996. The stem cell of the osteoblast. In Principles of bone
biology. pp. 39–50. Academic Press, San Diego, CA.

Tusher, V.G., Tibshirani, R., and Chu, G. 2001. Significance analysis
of microarrays applied to the ionizing radiation response. Proc.
Natl. Acad. Sci. 98: 5116–5121.

Wen, X., Furhman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker,
J.L., and Somogyi, R. 1998. Large-scale temporal gene expression
mapping of central nervous system development. Proc. Natl.
Acad. Sci. 95: 334–339.

Wilda, M., Bachner, D., Just, W., Geerkens, C., Kraus, P., Vogel, W.,
and Hameister, H. 2000. A comparison of the expression pattern
of five genes of the family of small leucine-rich proteoglycans
during mouse development. J. Bone Miner. Res. 15: 2187–2196.

Xu, T., Bianco, P., Fisher, L.W., Longenecker, G., Smith, E.,
Goldstein, S., Bonadio, J., Boskey, A., Heegaard, A.M., Sommer,
B., et al. 1998. Targeted disruption of the biglycan gene leads to
an osteoporosis-like phenotype in mice. Nat. Genet. 20: 78–82.

Yaffe, D. and Saxel, O. 1977. Serial passaging and differentiation of
myogenic cells isolated from dystrophic mouse muscle. Nature
270: 725–727.

Yamaguchi, A. and Kahn, A.J. 1991. Clonal osteogenic cell lines
express myogenic and adipogenic developmental potential.
Calcif. Tissue Int. 49: 221–225.

Received February 1, 2001; accepted in revised form October 26, 2001.

Theilhaber et al.

176 Genome Research
www.genome.org


